支持向量机从原理到算法的实现

32 篇文章 452 订阅 ¥9.90 ¥99.00
本文详细介绍了支持向量机(SVM)的基本原理,包括最优超平面、间隔最大化和拉格朗日乘子法的应用。通过实例展示了如何求解线性可分支持向量机,并探讨了软间隔的概念,为进一步学习非线性SVM和使用sklearn库进行SVM实践奠定了基础。
摘要由CSDN通过智能技术生成

思想:寻找能够成功分开两类样本并且具有最大分类间隔的最优超平面。

1. 最优超平面应该距正负例分割边界(支持向量)距离相等,SVM求解目标就是要求出一个超平面使距离最大化,这样分割效果最佳。

假设最优超平面方程H: W*X+b=0

最优超平面向上平移C得到正例分割边界H2: W*X+b=C

最优超平面向下平移C得到负例分割边界H1: W*X+b=-C

{W}'=\frac{W}{C}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东城青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值