
tensorflow
文章平均质量分 79
tensorflow零基础到实战
优惠券已抵扣
余额抵扣
还需支付
¥9.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
东城青年
非宁静无以致远
微信号:15221816820
展开
-
深度学习面经
欠拟合与过拟合:欠拟合:指模型不能在训练集上获得足够低的训练误差 过拟合:指模型的训练误差与测试误差之间的差距过大,反映在评价指标上,就是模型在训练集上表现良好,在测试集上表现一般(泛化能力差)降低过拟合风险的方法:数据增强平移、旋转、缩放 利用生成对抗网络生成新数据降低模型复杂度神经网络:减少网络层数、神经个数、添加dropout层、训练提前终止 决策树:降低树的...原创 2019-09-19 16:53:25 · 2027 阅读 · 0 评论 -
目标检测梳理
RPN:region proposal Networks,用于生成region proposal,faster R-CNN中称之为anchor,通过softmax判断anchors属于foreground或者background,再利用bounding box regression 修正anchors获得精确的proposals,输出Top-N(默认为300)的区域给ROI pooling。定义不同大小不同长宽比的窗口滑动图片,将滑动窗口下的图片送入网络模型进行分类识别。原创 2023-07-06 15:46:51 · 717 阅读 · 0 评论 -
深度解读SqueezeNet网络结构
SqueezeNet 由伯克利&斯坦福的研究人员合作发表于 ICLR-2017,论文标题:《SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5MB》命名:从名字——SqueezeNet 就知道,本文的新意是 squeeze,squeeze 在 SqueezeNet 中表示一个 s...转载 2019-09-18 19:40:11 · 3656 阅读 · 0 评论 -
深度解读ShuffleNet网络结构
ShuffleNet是Face++的一篇关于降低深度网络计算量的论文,号称是可以在移动设备上运行的深度网络。这篇文章可以和MobileNet、Xception和ResNeXt结合来看,因为有类似的思想。卷积的group操作从AlexNet就已经有了,当时主要是解决模型在双GPU上的训练。ResNeXt借鉴了这种group操作改进了原本的ResNet。MobileNet则是采用了depthwise ...转载 2019-09-18 19:24:51 · 1858 阅读 · 1 评论 -
深刻解读MobileNet网络结构
引言卷积神经网络(CNN)已经普遍应用在计算机视觉领域,并且已经取得了不错的效果。图1为近几年来CNN在ImageNet竞赛的表现,可以看到为了追求分类准确度,模型深度越来越深,模型复杂度也越来越高,如深度残差网络(ResNet)其层数已经多达152层。图1 CNN在ImageNet上的表现(来源:CVPR2017)然而,在某些真实的应用场景如移动或者嵌入式设备,如此大而复杂...转载 2019-09-18 16:39:48 · 4109 阅读 · 0 评论 -
JetSon Nano开发板安装tensorflow-gpu
方案一:安装相关依赖:$ sudo apt-get install libhdf5-serial-dev hdf5-tools$ sudo apt-get install python3-pip$ pip3 install -U pip$ sudo apt-get install zlib1g-dev zip libjpeg8-dev libhdf5-dev $ sudo pyt...原创 2019-08-20 14:53:17 · 2150 阅读 · 3 评论 -
利用virtualenv创建tensorflow虚拟环境
pip3 install virtualenv #安装virtualenvvirtualenv -p /usr/bin/python3.5 venv #创建一个名为venv的python3.5虚拟环境,注意要创建某版本的python虚拟环境,必须在系统里安装此版本的python。-p后面是系统里装的python版本的路径(ubuntu默认有python2.7和python3.5两个版本)...原创 2019-08-16 16:34:35 · 862 阅读 · 0 评论 -
linux下Anaconda的安装及添加虚拟环境
去官网下载anacond的linux版本:点击右上角的download进入下载页面,点击Linux下载Python3.7version 64-Bit(x86)Installer(517MB)下载完后,在文件的当前路径下执行以下命令,根据提示一直按enter yes等完成安装。bash Anaconda3-2019.07-Linux-x86_64.sh配置anaconda的环境...原创 2019-08-16 11:51:16 · 6971 阅读 · 0 评论 -
UserWarning: Matplotlib is currently using agg, which is a non-GUI backend.
在服务器上运行TensorFlow.Object_Detection时遇到问题:UserWarning: Matplotlib is currently using agg, which is a non-GUI backend.检测物体最终生成的图片无法在终端显示。看到好多博客说在frommatplotlib import pyplot as plt前面一行加上import mat...原创 2019-08-01 15:39:42 · 2380 阅读 · 0 评论 -
dlib:68个人脸关键点检测
参考文章:图片人脸检测--Dlib版检测效果:anaconda prompt中输入:pip install dlib安装dlib包下载训练模型:训练模型用于是人脸识别的关键,用于查找图片的关键点。下载地址:http://dlib.net/files/下载文件:shape_predictor_68_face_landmarks.dat.bz2单张图片代码...原创 2019-06-18 10:10:19 · 13631 阅读 · 0 评论 -
目标检测算法YOLO算法介绍
YOLO算法(You Only Look Once)比如你输入图像是100x100,然后在图像上放一个网络,为了方便讲述,此处使用3x3网格,实际实现时会用更精细的网格(如19x19)。基本思想是,使用图像分类和定位算法,然后将算法应用到9个格子上。更具体一点,你需要这样定义训练标签,对于9个格子中的每一个都指定一个标签y,其中y是一个8维向量(与前面讲述的一样,分别为Pc,bx,by,bh,...转载 2019-05-24 15:19:15 · 4997 阅读 · 0 评论 -
基于空间金字塔池化的卷积神经网络物体检测
基于空间金字塔池化的卷积神经网络物体检测原文地址:http://blog.csdn.net/hjimce/article/details/50187655一、相关理论本篇博文主要讲解大神何凯明2014年的paper:《Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition》,这篇p...转载 2019-05-23 19:40:40 · 294 阅读 · 0 评论 -
边框回归(Bounding Box Regression)详解
Bounding-Box regression最近一直在看目标检测有关的Paper, 从rcnn, fast rcnn, faster rcnn, yolo, r-fcn, ssd,到今年cvpr最新的yolo9000。这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的paper都是一笔带过,或者直接引用rcnn就把损失函数写出来了。前三条网上解释比较多,后面的两条我看了...转载 2019-05-23 16:09:40 · 2071 阅读 · 0 评论 -
目标检测(一)——目标检测综述(持续更新中)
文章摘自https://blog.csdn.net/qq_35451572/article/details/80249259文章目录1. 什么是目标检测? 2. 目标检测要解决的核心问题 3. 目标检测学习资源 3.1 目标检测论文、代码整理 3.2 VOC数据集检测排名 3.3各大论文期刊目标检测 4. 目标检测最新进展 参考1. 什么是目标检测?**...转载 2019-05-23 10:17:32 · 1290 阅读 · 0 评论 -
深度学习六、图像风格迁移
所谓图像风格迁移,是指利用算法学习著名画作的风格,然后再把这种风格应用到另外一张图片上的技术。1 图像风格迁移的原理在学习原始的图像风格迁移之前,可以先回忆一下ImageNet图像识别模型VGGNet。事实上,可以这样理解VGGNet的结构:前面的卷积层是从图像中提取“特征”,而后面的全连接层是把特征转换为类别概率。其中VGGNet中的浅层(如conv1_1,conv1_2),提取的特...原创 2019-04-26 14:40:46 · 6212 阅读 · 16 评论 -
深度学习七:GAN和DCGAN入门
GAN的全称为Generative Adversarial Networks,意为对抗生成网络。原始的GAN是一种无监督学习方法,它巧妙地利用“对抗”的思想来学习生成式模型,一旦训练完成后可以生成全新的数据样本。DCGAN将GAN的概念扩展到卷积神经网络中,可以生成质量较高的图片样本。GAN和DCGAN在各个领域都有广泛的应用,这篇文章首先会介绍他们的原理,再介绍如何在TensorFlow中使用D...原创 2019-03-14 19:19:27 · 1618 阅读 · 9 评论 -
tensorboard在windows下的使用
在anaconda prompt中安装tensorboard:pip install tensorboard编写一个生成图的py代码:import tensorflow as tf a = tf.constant(5,name="input_a")b = tf.constant(3,name="input_b")c = tf.multiply(a,b,name="mul_c"...原创 2019-03-12 10:57:05 · 1412 阅读 · 0 评论 -
深入理解GoogLeNet结构
inception(也称GoogLeNet)是2014年Christian Szegedy提出的一种全新的深度学习结构,在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfit、梯度消失、梯度爆炸等。inception的提出则从另一种角度来提升训练结果:能更高效的利用计算资源,在相同的计算量下能提取到更多的特征,从而...转载 2019-03-09 21:25:59 · 206 阅读 · 0 评论 -
深度学习五、MTCNN人脸检测与对齐和FaceNet人脸识别
在说到人脸检测我们首先会想到利用Harr特征和Adaboost分类器进行人脸检测,其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场、车站、地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变、数量冗大、姿势多样包括俯拍人脸、戴帽子口罩等的遮挡、表情夸张、化妆伪装、光照条件恶劣、分辨率低甚至连肉眼都较难区分等。在这样复杂的环境下基于Haar特征...原创 2019-03-09 19:52:46 · 7985 阅读 · 2 评论 -
卷积操作是如何在RGB三通道图像上进行的
大家的印象中卷积的计算过程是不是如下图?这是对单通道即灰度图像进行卷积操作,而对于三通道的彩色图像其卷积的过程如下:左列的X是输入的三通道图像即彩色图像,中间红色的两列是我们的kernel(即3x3的filter),共两个(即输出的feature通道为2)。最后一列为卷积之后的特征(由于2个kernel,输出通道为2)。由上面的过程可以看出,输入是3维(hight*width*...原创 2019-03-06 19:45:31 · 4553 阅读 · 1 评论 -
初步认识目标定位、特征点检测、目标检测
一目标定位(单个物体)对象检测,它是计算机视觉领域中一个新兴的应用方向,相比前两年,它的性能越来越好。在构建对象检测之前,我们先了解一下对象定位,首先我们看看它的定义。图片分类任务我们已经熟悉了,就是拿出一张图片,判断其是不是汽车,这就是图片分类。这节我们要学习构建神经网络的另一个问题,即定位分类问题。这意味着,我们不仅要用算法判断图片中是不是一辆汽车,还要在图片中标记出它的位置,用方...转载 2019-03-06 18:11:54 · 1428 阅读 · 0 评论 -
深度学习四、使用TensorFlow Object Detection API训练扑克牌对其进行检测
在目标检测领域方向的相关经典文献包括Fast-RCNN、Faster-RCNN、SSD、YOLO以及RetinaNet等。话说“工欲善其事必先利其器”,而该Object Detection API就是谷歌的牛逼工程师们开源给我们的最好“利器”。今天我们将借助该API训练自己的数据集进行目标检测,这里选择的目标为扑克牌,收集了9,10,J,Q,K,A六类扑克。1、下载TensorFlow ...原创 2019-03-06 13:16:49 · 6491 阅读 · 10 评论 -
深度学习三、使用TensorFlow Object Detection API进行目标检测(使用VOC 2012数据集训练自己的模型)
2017年6月,Google公司开放了TensorFlow Object Detection API。这个项目使用TensorFlow实现了大多数深度学习目标检测框架,其中就包括Faster R-CNN。一、实现官方给的目标检测的示例教程1、下载TensorFlow Object Detection API在github上该API存放在tensorflow/models项目下,下载地址...原创 2019-03-04 12:41:40 · 3883 阅读 · 3 评论 -
详细解释CNN卷积神经网络各层的参数和链接个数的计算
卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。 图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这些映射图再进过滤波得到C3层。这个层级结构再和S2一...转载 2019-02-27 16:02:16 · 492 阅读 · 0 评论 -
详解CNN五大经典模型:Lenet,Alexnet,Googlenet,VGG,DRL
关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需。 Lenet,1986年 Alexnet,2012年 GoogleNet,2014年 VGG,2014年 Deep Residual Learning,2015年 Lenet就从Lenet说起,可以看下c...转载 2019-02-27 15:58:59 · 1376 阅读 · 0 评论 -
深度学习二、使用TensorFlow Slim微调经典模型进行图像识别(训练自己的数据集)
基本步骤:数据准备:将数据集切分为训练节和验证集,并将数据转为tfrecord格式 下载TensorFlow Slim的源代码:github.com/tensorflow/models 定义新的datasets文件:在slim/datasets中,定义了所有可用的数据库,为了使用前面创建tfrecord数据进行训练,必须要在datasets中定义新的数据库。 准备训练文件夹:在slim文...原创 2019-02-26 21:27:27 · 1680 阅读 · 0 评论 -
机器学习 深度学习 神经网络 图像处理优质博客整理
图像处理、机器视觉、人工智能、机器学习:http://blog.csdn.net/zouxy09/article/details/14222605 http://blog.csdn.net/carson2005/article/details/6601109 http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html ...转载 2019-02-25 15:11:22 · 296 阅读 · 0 评论 -
《零基础入门深度学习》系列文章(教程+代码)
无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有...转载 2019-02-25 14:55:02 · 373 阅读 · 0 评论 -
tensorflow的数据读取机制
首先需要思考的一个问题是, 什么是数据读取?以图像数据为例,读取数据的过程可以用图2-2 来表示。 假设硬盘中有一张图片数据集0001.jpg、0002.jpg、0.0003.jpg……..只需要把它们读取到内存中,然后提供给GPU或是CPU进行计算就可以了。这听起来很窑易,但事实远没离那么简单。事实上,必须先读入数据后才能计算,假设读入用时0.1s,计算用时0.9s,那么意味着每过1s,GP...原创 2019-02-24 20:51:29 · 157 阅读 · 0 评论 -
深度学习一、MNIST机器学习入门
一、认识MNIST数据集下载数据集,tensorflow中封装了MNIST数据集:#导入(下载)MNIST数据集import tensorflow as tf#从tensorflow模块导入input_datafrom tensorflow.examples.tutorials.mnist import input_data#从MNIST_data中读取MNIST数据,这条语句在...原创 2019-02-24 11:22:14 · 497 阅读 · 0 评论 -
10大深度学习架构:计算机视觉优秀从业者必备
近日,Faizan Shaikh 在 Analytics Vidhya 发表了一篇题为《10 Advanced Deep Learning Architectures Data Scientists Should Know!》的文章,总结了计算机视觉领域已经成效卓著的 10 个深度学习架构,并附上了每篇论文的地址链接和代码实现。机器之心对该文进行了编译,原文链接请见文末。时刻跟上深度学习领...转载 2019-01-13 10:43:11 · 532 阅读 · 0 评论 -
深度学习资料
一、学习清单1、综合类(1)收集了各种最新最经典的文献,神经网络的资源列表:https://github.com/robertsdionne/neural-network-papers 里面包含了深度学习领域经典、以及最新最牛逼的算法,如果把这个列表学过一遍,基本已然达到了大神级别。(2)机器学习学习清单:https://github.com/ujjwalkarn/Machine-L...转载 2018-09-26 14:34:24 · 254 阅读 · 0 评论 -
tensorflow逻辑回归
本文利用tensorflow构建逻辑回归模型,利用softmax分类器对mnist手写字体进行识别分类。每个样本是28*28大小的。一、导入数据集import tensorflow as tfimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_data#读入手写字体数据集,会下载tenso...原创 2018-08-23 13:10:33 · 427 阅读 · 0 评论 -
tensorflow线性回归
一、构造1000组高斯分布数据import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#定义一个空的列表vector = []#生成1000组随机数for i in range(1000): x = np.random.normal(0,0.6) y = 0.2*x + 0....原创 2018-08-22 17:38:50 · 391 阅读 · 0 评论 -
tensorflow基本操作
一、tensorflow定义变量和显示结果#先导入模块import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#定义变量w = tf.Variable([2,3])x = tf.Variable([ [1,1], [2,2]] ...原创 2018-08-22 16:32:20 · 314 阅读 · 0 评论