实现快速排序算法的关键在于先在数组中选择一个数字,接下来把数组中的数字分为两部分,比选择的数字小的数字移到数组的左边,比选择的数字大的数字移到数组的右边。
快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod)。
该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
以一个数组作为示例,取区间第一个数为基准数。
初始时,i = 0; j =9; X = a[i] = 72
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8];i++; 这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3];j--;
数组变为:
i = 3; j =7; X=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。
数组变为:
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
对挖坑填数进行总结
1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。
2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。
3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。
4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中。
代码如下:
#include<iostream>
using namespace std;
void quickSort(int s[], int l, int r)
{
if (l < r)
{
int i = l, j = r, x = s[l];
while (i < j)
{
while (i<j && s[j] >= x)//从后向前找到第一个比基准数小的数,放到前面
j--;
if(i != j)
s[i++] = s[j];
while (i<j && s[i] < x)//从前向后找到第一个比基准数大的数,放到后面
i++;
if(i != j)
s[j--] = s[i];
}
s[i] = x;
quickSort(s, l, i - 1);//递归调用
quickSort(s, i + 1, r);
}
}
int main()
{
int array[] = { 34,65,12,43,67,5,78,10,3,70 };
int length = sizeof(array) / sizeof(int);
quickSort(array, 0, length - 1);
for (int k = 0; k < length; k++)
cout << array[k] << ',' << endl;
return 0;
}
参考文章: C++实现快速排序(源代码)