KKT条件主要涉及凸优化问题,学习SVM的时候求解拉格朗日函数的对偶问题时,需要使用KKT条件来得到最终的。
1、对于无约束问题(unconstrained minimization):
1) 一阶必要条件为:
2) 二阶必要条件为:
即Hessian半正定
2、等式约束问题(Equality constraints):
原问题为:
为目标函数,为约束条件
eg:
当时,即和共线,在此处可到最优解(在约束条件的边界上)。
1)
2) 优化问题的拉格朗日函数为:
3) 存在最优解的条件为:
等价于
3、不等式约束问题(Inequality constraints):
原问题:
对于不等式约束来说有两种情况:
1)第一种情况是约束条件的图像在内部:
eg:
由于在的内部,此时最优解在他们的原点,这种情况可看成是无约束问题
2)第二种情况为:约束条件的区域与重叠
eg:
与图像有重叠,最终的最优解在约束条件的边界上取得
原问题的拉格朗日函数为:
因此有:
综上可得到KKT条件为:
注:称为互补松弛条件