在前面的基本线性回归模型中,我们假定的是随机扰动项无自相关性,那么也就是说Cov(ui,uj)=0,i不等于j,且i,j=1,2,.....n,这表明任意两次观测的ui,uj是不相关的,即u在某一次的观测值与任何其他观测中的值互不影响,称之为无序列相关性。
一、自相关性的性质
- 时间相关性:自相关问题通常是与时间序列数据相关的
- 空间相关性:在横截面数据中也可能产生自相关性问题,称之为空间相关,比如某一季度工人罢工对本季度及其下一个解读的产出的影响,某一个家庭的消费支出水平与另一个家庭的消费支出有相关性。比如说在时间序列数据中,上一期的影响会传导至下一期,并对下一期造成一定的影响;
二、自相关性产生原因
(1)惯性: