Contents
不定积分与定积分的计算
一、不定积分
原函数的定义
设 F ( x ) F(x) F(x) , f ( x ) f(x) f(x) 在区间 D D D 上有定义,如果 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x) ,则称 F ( x ) F(x) F(x) 为 f ( x ) f(x) f(x) 的一个原函数。
不定积分的定义
设 F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x) ,则称 f ( x ) f(x) f(x) 的所有原函数为 f ( x ) f(x) f(x) 的不定积分,记作 ∫ f ( x ) d x = F ( x ) + C \displaystyle\int f(x)dx=F(x)+C ∫f(x)dx=F(x)+C
不定积分的性质
设 f ( x ) f(x) f(x) , g ( x ) g(x) g(x) 存在原函数,则
(1) ( ∫ f ( x ) d x ) ′ = f ( x ) (\displaystyle\int f(x)dx)'=f(x) (∫f(x)dx)′=f(x)
(2) ∫ f ′ ( x ) d x = f ( x ) + C \displaystyle\int f'(x)dx=f(x)+C ∫f′(x)dx=f(x)+C
(3) ∫ ( f ( x ) + g ( x ) ) d x = ∫ f ( x ) d x + ∫ g ( x ) d x \displaystyle\int(f(x)+g(x))dx=\displaystyle\int f(x)dx+\displaystyle\int g(x)dx ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx
(4) ∫ k ⋅ f ( x ) d x = k ⋅ ∫ f ( x ) d x \displaystyle\int k\cdot f(x)dx=k\cdot \displaystyle\int f(x)dx ∫k⋅f(x)dx=k⋅∫f(x)dx
基本积分公式
(1) ∫ 1 d x = x + C \displaystyle\int1dx=x+C ∫1dx=x+C
(2) ∫ k d x = k x + C \displaystyle\int kdx=kx+C ∫kdx=kx+C
(3) ∫ x α d x = 1 α + 1 x α + 1 + C \displaystyle\int x^\alpha dx=\displaystyle\frac{1}{\alpha+1}x^{\alpha+1}+C ∫xαdx=α+11xα+1+C
(4) ∫ 1 x d x = ln ∣ x ∣ + C \displaystyle\int\frac{1}{x}dx=\ln|x|+C ∫x1dx=ln∣x∣+C
(5) ∫ e x d x = e x + C \displaystyle\int e^xdx=e^x+C ∫exdx=ex+C
(6) ∫ a x d x = 1 ln a a x + C \displaystyle\int a^xdx=\displaystyle\frac{1}{\ln a}a^x+C ∫axdx=lna1ax+C
(7) ∫ sin x d x = − cos x + C \displaystyle\int\sin xdx=-\cos x+C ∫sinxdx=−cosx+C
(8) ∫ cos x d x = sin x + C \displaystyle\int\cos xdx=\sin x+C ∫cosxdx=sinx+C
(9) ∫ sec 2 x d x = tan x + C \displaystyle\int \sec^2xdx=\tan x+C ∫sec2xdx=tanx+C
(10) ∫ csc 2 x d x = − cot x + C \displaystyle\int\csc^2 xdx=-\cot x+C ∫csc2xdx=−cotx+C
(11) ∫ sec x tan x d x = sec x + C \displaystyle\int\sec x\tan xdx=\sec x+C ∫secxtanxdx=secx+C
(12) ∫ csc x cot x d x = − cot x + C \displaystyle\int\csc x\cot xdx=-\cot x+C ∫cscxcotxdx=−cotx+C
(13) ∫ 1 1 − x 2 d x = arcsin x + C \displaystyle\int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C ∫1−x21dx=arcsinx+C
(14) ∫ 1 a 2 − x 2 d x = arcsin x a + C \displaystyle\int\frac{1}{\sqrt{a^2-x^2}}dx=\arcsin \displaystyle\frac{x}{a}+C ∫a2−x21dx=arcsinax+C
(15) ∫ 1 1 + x 2 d x = arctan x + C \displaystyle\int\frac{1}{1+x^2}dx=\arctan x+C ∫1+x21dx=arctanx+C
(16) ∫ 1 a 2 + x 2 d x = 1 a arctan x a + C \displaystyle\int\frac{1}{a^2+x^2}dx=\displaystyle\frac{1}{a}\arctan\frac{x}{a}+C ∫a2+x21dx=a1arctanax+C
(17) ∫ tan x d x = − ln ∣ cos x ∣ + C \displaystyle\int\tan xdx=-\ln|\cos x|+C ∫tanxdx=−ln∣cosx∣+C
(18) ∫ cot x d x = ln ∣ sin x ∣ + C \displaystyle\int\cot xdx=\ln|\sin x|+C ∫cotxdx=ln∣sinx∣+C
(19) ∫ sec x d x = ln ∣ sec x + tan x ∣ + C \displaystyle\int\sec xdx=\ln|\sec x+\tan x|+C ∫secxdx=ln∣secx+tanx∣+C
(20) ∫ csc x d x = − ln ∣ csc x + cot x ∣ + C \displaystyle\int \csc xdx=-\ln|\csc x+\cot x|+C ∫cscxdx=−ln∣cscx+cotx∣+C
(21) ∫ 1 x 2 − a 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C \displaystyle\int\frac{1}{x^2-a^2}dx=\displaystyle\frac{1}{2a}\ln\bigg|\frac{x-a}{x+a}\bigg|+C ∫x2−a21dx=2a1ln∣∣∣∣x+ax−a∣∣∣∣+C
(22) ∫ 1 a 2 − x 2 d x = 1 2 a ln ∣ a + x a − x ∣ + C \displaystyle\int\frac{1}{a^2-x^2}dx=\displaystyle\frac{1}{2a}\ln\bigg|\frac{a+x}{a-x}\bigg|+C ∫a2−x21dx=2a1ln∣∣∣∣a−xa+x∣∣∣∣+C
进阶积分公式
(23) ∫ 1 x 2 + a 2 d x = ln ( x + x 2 + a 2 ) + C \displaystyle\int\frac{1}{\sqrt{x^2+a^2}}dx=\ln(x+\sqrt{x^2+a^2})+C ∫x2+a21dx=ln(x+x2+a2)+C
(24) ∫ 1 x 2 − a 2 d x = ln ∣ x + x 2 − a 2 ∣ + C \displaystyle\int\frac{1}{\sqrt{x^2-a^2}}dx=\ln\big|x+\sqrt{x^2-a^2}\big|+C ∫x2−a21dx=ln∣∣x+x2−a2∣∣+C
(25) ∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 ln ( x + x 2 + a 2 ) + C \displaystyle\int\sqrt{x^2+a^2}dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\ln(x+\sqrt{x^2+a^2})+C ∫x2+a2dx=2xx2+a2+2a2ln(x+x2+a2)+C
(26) ∫ x 2 − a 2 d x = x 2 x 2 − a 2 + a 2 2 ln ( x + x 2 − a 2 ) + C \displaystyle\int\sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}+\frac{a^2}{2}\ln(x+\sqrt{x^2-a^2})+C ∫x2−a2dx=2xx2−a2+2a2ln(x+x2−a2)+C
(27) ∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 arcsin ( x a ) + C \displaystyle\int\sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin(\displaystyle\frac{x}{a})+C ∫a2−x2dx=2xa2−x2+2a2arcsin(ax)+C
(28) ∫ cos 2 x d x = 1 2 x + 1 4 sin 2 x + C \displaystyle\int \cos^2xdx=\frac{1}{2}x+\frac{1}{4}\sin2x+C ∫cos2xdx=21x+41sin2x+C
二、不定积分的计算
1. 直接积分法
利用不定积分的性质和积分公式。
例 1. ∫ tan 2 x d x \displaystyle\int\tan^2x\,dx ∫tan2xdx
I = ∫ ( sec 2 x − 1 ) d x = tan x − x + C . I=\displaystyle\int(\sec^2x-1)\,dx=\tan x-x+C. I=∫(sec2x−1)dx=tanx−x+C.
例 2. ∫ sec 2 x csc 2 x d x \displaystyle\int\sec^2x\csc^2x\,dx ∫sec2xcsc2xdx
I = ∫ 1 sin 2 x cos 2 x d x = ∫ sin 2 x + cos 2 x sin 2 x cos 2 x d x = ∫ ( sec 2 x + csc 2 x ) d x = tan x − cot x + C . I=\displaystyle\int\frac{1}{\sin^2x\cos^2x}\,dx=\displaystyle\int\frac{\sin^2x+\cos^2x}{\sin^2x\cos^2x}\,dx=\displaystyle\int(\sec^2x+\csc^2x)dx=\tan x-\cot x+C. I=∫sin2xcos2x1dx=∫sin2xcos2xsin2x+cos2xdx=∫(sec2x+csc2x)dx=tanx−cotx+C.
例 3. ∫ x 3 − 2 x 3 + x + 6 1 + x 2 d x \displaystyle\int\frac{x^3-2x^3+x+6}{1+x^2}\,dx ∫1+x2x3−2x3+x+6dx
I = ∫ ( x − 2 + 8 1 + x 2 ) d x = 1 2 x 2 − 2 x + 8 arctan x + C . I=\displaystyle\int(x-2+\frac{8}{1+x^2})\,dx=\frac{1}{2}x^2-2x+8\arctan x+C. I=∫(x−2+1+x28)dx=21x2−2x+8arctanx+C.
例 4. ∫ max { x , 2 x − 1 } d x \displaystyle\int\max\{x,\,2x-1\}\,dx ∫max{ x,2x−1}dx
当 x ≥ 1 x\geq1 x≥1 时, I = ∫ ( 2 x − 1 ) d x = x 2 − x + C I=\displaystyle\int(2x-1)dx=x^2-x+C I=∫(2x−1)dx=x2−x+C
当 x < 1 x<1 x<1 时, I = ∫ x d x = 1 2 x 2 + C I=\displaystyle\int x\,dx=\frac{1}{2}x^2+C I=∫xdx=21x2+C
由于 F ( x ) F(x) F(x) 连续,则
F ( x ) = { x 2 − x + C , x ≥ 1 1 2 x 2 − 1 2 + C , x < 1 . F(x)= \left\{ \begin{array}{lll} x^2-x+C & , & x\geq1 \\ \displaystyle\frac{1}{2}x^2-\frac{1}{2}+C & , & x<1 \end{array} \right. . F(x)={ x2−x+C21x2−21+C,,x≥1x<1.
2. 凑微分法(第一类换元)
∫ f ( φ ( x ) ) φ ′ ( x ) d x = ∫ f ( φ ( x ) ) d ( φ ( x ) ) = F ( φ ( x ) ) + C \int f(\varphi(x))\varphi'(x)dx=\int f(\varphi(x))\,d(\varphi(x))=F(\varphi(x))+C ∫f(φ(x))φ′(x)dx=∫f(φ(x))d(φ(x))=F(φ(x))+C
例 5. ∫ ln x x d x \displaystyle\int\frac{\ln x}{x}dx ∫xlnxdx
I = ∫ ln x d ( ln x ) = 1 2 ( ln x ) 2 + C . I=\displaystyle\int\ln x\,d(\ln x)=\frac{1}{2}(\ln x)^2+C. I=∫lnxd(lnx)=21(lnx)2+C.
例 6. ∫ x a 2 − x 2 d x \displaystyle\int\frac{x}{\sqrt{a^2-x^2}}\,dx ∫a2−x2xdx
I = − 1 2 ∫ d ( a 2 − x 2 ) a 2 − x 2 = − a 2 − x 2 + C . I=-\displaystyle\frac{1}{2}\int\frac{d(a^2-x^2)}{\sqrt{a^2-x^2}}=-\sqrt{a^2-x^2}+C. I=−21∫a2−x2d(a2−x2)=−a2−x2+C.
例 7. ∫ d x x ( 1 + x ) \displaystyle\int\frac{dx}{\sqrt{x}(1+x)} ∫x(1+x)dx
I = ∫ 2 d ( x ) 1 + ( x ) 2 = 2 arctan ( x ) + C . I=\displaystyle\int\frac{2\ d(\sqrt{x})}{1+(\sqrt{x})^2}=2\arctan(\sqrt{x})+C. I=∫1+(x)22 d(x)=2arctan(x)+C.
例 8. ∫ 1 a 2 + x 2 d x \displaystyle\int\frac{1}{a^2+x^2}\,dx ∫a2+x21dx (公式16)
I = 1 a 2 ∫ a ⋅ d ( x a ) 1 + ( x a ) 2 = 1 a arctan x a + C . I=\displaystyle\frac{1}{a^2}\int\frac{a\cdot d(\displaystyle\frac{x}{a})}{1+(\displaystyle\frac{x}{a})^2}=\frac{1}{a}\arctan\frac{x}{a}+C. I=a21∫1+(ax)2a⋅d(ax)=a1arctanax+C.
例 9. ∫ tan x d x \displaystyle\int\tan x\,dx ∫tanxdx (公式17)
I = ∫ sin x cos x d x = − ∫ d ( cos x ) cos x = − ln ∣ cos x ∣ + C . I=\displaystyle\int\frac{\sin x}{\cos x}\,dx=-\int\frac{d(\cos x)}{\cos x}=-\ln|\cos x|+C. I=∫cosxsinxdx=−∫cosxd(cosx)=−ln∣</