不定积分与定积分的计算

本文深入探讨了不定积分与定积分的概念、性质及其计算方法,包括直接积分、凑微分法、变量代换法和分部积分法等,并通过大量实例展示了各种积分技巧的应用,旨在帮助读者理解和掌握积分计算的核心要领。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不定积分与定积分的计算

一、不定积分

原函数的定义

​ 设 F ( x ) F(x) F(x) , f ( x ) f(x) f(x) 在区间 D D D 上有定义,如果 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x) ,则称 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个原函数。

不定积分的定义

​ 设 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x) ,则称 f ( x ) f(x) f(x) 的所有原函数为 f ( x ) f(x) f(x) 的不定积分,记作 ∫ f ( x ) d x = F ( x ) + C \displaystyle\int f(x)dx=F(x)+C f(x)dx=F(x)+C

不定积分的性质

​ 设 f ( x ) f(x) f(x) , g ( x ) g(x) g(x) 存在原函数,则

​ (1) ( ∫ f ( x ) d x ) ′ = f ( x ) (\displaystyle\int f(x)dx)'=f(x) (f(x)dx)=f(x)

​ (2) ∫ f ′ ( x ) d x = f ( x ) + C \displaystyle\int f'(x)dx=f(x)+C f(x)dx=f(x)+C

​ (3) ∫ ( f ( x ) + g ( x ) ) d x = ∫ f ( x ) d x + ∫ g ( x ) d x \displaystyle\int(f(x)+g(x))dx=\displaystyle\int f(x)dx+\displaystyle\int g(x)dx (f(x)+g(x))dx=f(x)dx+g(x)dx

​ (4) ∫ k ⋅ f ( x ) d x = k ⋅ ∫ f ( x ) d x \displaystyle\int k\cdot f(x)dx=k\cdot \displaystyle\int f(x)dx kf(x)dx=kf(x)dx

基本积分公式

(1) ∫ 1 d x = x + C \displaystyle\int1dx=x+C 1dx=x+C
(2) ∫ k d x = k x + C \displaystyle\int kdx=kx+C kdx=kx+C
(3) ∫ x α d x = 1 α + 1 x α + 1 + C \displaystyle\int x^\alpha dx=\displaystyle\frac{1}{\alpha+1}x^{\alpha+1}+C xαdx=α+11xα+1+C
(4) ∫ 1 x d x = ln ⁡ ∣ x ∣ + C \displaystyle\int\frac{1}{x}dx=\ln|x|+C x1dx=lnx+C
(5) ∫ e x d x = e x + C \displaystyle\int e^xdx=e^x+C exdx=ex+C
(6) ∫ a x d x = 1 ln ⁡ a a x + C \displaystyle\int a^xdx=\displaystyle\frac{1}{\ln a}a^x+C axdx=lna1ax+C
(7) ∫ sin ⁡ x d x = − cos ⁡ x + C \displaystyle\int\sin xdx=-\cos x+C sinxdx=cosx+C
(8) ∫ cos ⁡ x d x = sin ⁡ x + C \displaystyle\int\cos xdx=\sin x+C cosxdx=sinx+C
(9) ∫ sec ⁡ 2 x d x = tan ⁡ x + C \displaystyle\int \sec^2xdx=\tan x+C sec2xdx=tanx+C
(10) ∫ csc ⁡ 2 x d x = − cot ⁡ x + C \displaystyle\int\csc^2 xdx=-\cot x+C csc2xdx=cotx+C
(11) ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \displaystyle\int\sec x\tan xdx=\sec x+C secxtanxdx=secx+C
(12) ∫ csc ⁡ x cot ⁡ x d x = − cot ⁡ x + C \displaystyle\int\csc x\cot xdx=-\cot x+C cscxcotxdx=cotx+C
(13) ∫ 1 1 − x 2 d x = arcsin ⁡ x + C \displaystyle\int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C 1x2 1dx=arcsinx+C
(14) ∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C \displaystyle\int\frac{1}{\sqrt{a^2-x^2}}dx=\arcsin \displaystyle\frac{x}{a}+C a2x2 1dx=arcsinax+C
(15) ∫ 1 1 + x 2 d x = arctan ⁡ x + C \displaystyle\int\frac{1}{1+x^2}dx=\arctan x+C 1+x21dx=arctanx+C
(16) ∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C \displaystyle\int\frac{1}{a^2+x^2}dx=\displaystyle\frac{1}{a}\arctan\frac{x}{a}+C a2+x21dx=a1arctanax+C
(17) ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \displaystyle\int\tan xdx=-\ln|\cos x|+C tanxdx=lncosx+C
(18) ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \displaystyle\int\cot xdx=\ln|\sin x|+C cotxdx=lnsinx+C
(19) ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \displaystyle\int\sec xdx=\ln|\sec x+\tan x|+C secxdx=lnsecx+tanx+C
(20) ∫ csc ⁡ x d x = − ln ⁡ ∣ csc ⁡ x + cot ⁡ x ∣ + C \displaystyle\int \csc xdx=-\ln|\csc x+\cot x|+C cscxdx=lncscx+cotx+C
(21) ∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \displaystyle\int\frac{1}{x^2-a^2}dx=\displaystyle\frac{1}{2a}\ln\bigg|\frac{x-a}{x+a}\bigg|+C x2a21dx=2a1lnx+axa+C
(22) ∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C \displaystyle\int\frac{1}{a^2-x^2}dx=\displaystyle\frac{1}{2a}\ln\bigg|\frac{a+x}{a-x}\bigg|+C a2x21dx=2a1lnaxa+x+C

进阶积分公式

(23) ∫ 1 x 2 + a 2 d x = ln ⁡ ( x + x 2 + a 2 ) + C \displaystyle\int\frac{1}{\sqrt{x^2+a^2}}dx=\ln(x+\sqrt{x^2+a^2})+C x2+a2 1dx=ln(x+x2+a2 )+C
(24) ∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C \displaystyle\int\frac{1}{\sqrt{x^2-a^2}}dx=\ln\big|x+\sqrt{x^2-a^2}\big|+C x2a2 1dx=lnx+x2a2 +C
(25) ∫ x 2 + a 2 d x = x 2 x 2 + a 2 + a 2 2 ln ⁡ ( x + x 2 + a 2 ) + C \displaystyle\int\sqrt{x^2+a^2}dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\ln(x+\sqrt{x^2+a^2})+C x2+a2 dx=2xx2+a2 +2a2ln(x+x2+a2 )+C
(26) ∫ x 2 − a 2 d x = x 2 x 2 − a 2 + a 2 2 ln ⁡ ( x + x 2 − a 2 ) + C \displaystyle\int\sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}+\frac{a^2}{2}\ln(x+\sqrt{x^2-a^2})+C x2a2 dx=2xx2a2 +2a2ln(x+x2a2 )+C
(27) ∫ a 2 − x 2 d x = x 2 a 2 − x 2 + a 2 2 arcsin ⁡ ( x a ) + C \displaystyle\int\sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin(\displaystyle\frac{x}{a})+C a2x2 dx=2xa2x2 +2a2arcsin(ax)+C
(28) ∫ cos ⁡ 2 x d x = 1 2 x + 1 4 sin ⁡ 2 x + C \displaystyle\int \cos^2xdx=\frac{1}{2}x+\frac{1}{4}\sin2x+C cos2xdx=21x+41sin2x+C

二、不定积分的计算

1. 直接积分法

利用不定积分的性质和积分公式。

例 1. ∫ tan ⁡ 2 x   d x \displaystyle\int\tan^2x\,dx tan2xdx

I = ∫ ( sec ⁡ 2 x − 1 )   d x = tan ⁡ x − x + C . I=\displaystyle\int(\sec^2x-1)\,dx=\tan x-x+C. I=(sec2x1)dx=tanxx+C.

例 2. ∫ sec ⁡ 2 x csc ⁡ 2 x   d x \displaystyle\int\sec^2x\csc^2x\,dx sec2xcsc2xdx
I = ∫ 1 sin ⁡ 2 x cos ⁡ 2 x   d x = ∫ sin ⁡ 2 x + cos ⁡ 2 x sin ⁡ 2 x cos ⁡ 2 x   d x = ∫ ( sec ⁡ 2 x + csc ⁡ 2 x ) d x = tan ⁡ x − cot ⁡ x + C . I=\displaystyle\int\frac{1}{\sin^2x\cos^2x}\,dx=\displaystyle\int\frac{\sin^2x+\cos^2x}{\sin^2x\cos^2x}\,dx=\displaystyle\int(\sec^2x+\csc^2x)dx=\tan x-\cot x+C. I=sin2xcos2x1dx=sin2xcos2xsin2x+cos2xdx=(sec2x+csc2x)dx=tanxcotx+C.

例 3. ∫ x 3 − 2 x 3 + x + 6 1 + x 2   d x \displaystyle\int\frac{x^3-2x^3+x+6}{1+x^2}\,dx 1+x2x32x3+x+6dx

I = ∫ ( x − 2 + 8 1 + x 2 )   d x = 1 2 x 2 − 2 x + 8 arctan ⁡ x + C . I=\displaystyle\int(x-2+\frac{8}{1+x^2})\,dx=\frac{1}{2}x^2-2x+8\arctan x+C. I=(x2+1+x28)dx=21x22x+8arctanx+C.

例 4. ∫ max ⁡ { x ,   2 x − 1 }   d x \displaystyle\int\max\{x,\,2x-1\}\,dx max{ x,2x1}dx

x ≥ 1 x\geq1 x1 时, I = ∫ ( 2 x − 1 ) d x = x 2 − x + C I=\displaystyle\int(2x-1)dx=x^2-x+C I=(2x1)dx=x2x+C

x < 1 x<1 x<1 时, I = ∫ x   d x = 1 2 x 2 + C I=\displaystyle\int x\,dx=\frac{1}{2}x^2+C I=xdx=21x2+C

由于 F ( x ) F(x) F(x) 连续,则

F ( x ) = { x 2 − x + C , x ≥ 1 1 2 x 2 − 1 2 + C , x < 1 . F(x)= \left\{ \begin{array}{lll} x^2-x+C & , & x\geq1 \\ \displaystyle\frac{1}{2}x^2-\frac{1}{2}+C & , & x<1 \end{array} \right. . F(x)={ x2x+C21x221+C,,x1x<1.

2. 凑微分法(第一类换元)

∫ f ( φ ( x ) ) φ ′ ( x ) d x = ∫ f ( φ ( x ) )   d ( φ ( x ) ) = F ( φ ( x ) ) + C \int f(\varphi(x))\varphi'(x)dx=\int f(\varphi(x))\,d(\varphi(x))=F(\varphi(x))+C f(φ(x))φ(x)dx=f(φ(x))d(φ(x))=F(φ(x))+C

例 5. ∫ ln ⁡ x x d x \displaystyle\int\frac{\ln x}{x}dx xlnxdx

I = ∫ ln ⁡ x   d ( ln ⁡ x ) = 1 2 ( ln ⁡ x ) 2 + C . I=\displaystyle\int\ln x\,d(\ln x)=\frac{1}{2}(\ln x)^2+C. I=lnxd(lnx)=21(lnx)2+C.

例 6. ∫ x a 2 − x 2   d x \displaystyle\int\frac{x}{\sqrt{a^2-x^2}}\,dx a2x2 xdx

I = − 1 2 ∫ d ( a 2 − x 2 ) a 2 − x 2 = − a 2 − x 2 + C . I=-\displaystyle\frac{1}{2}\int\frac{d(a^2-x^2)}{\sqrt{a^2-x^2}}=-\sqrt{a^2-x^2}+C. I=21a2x2 d(a2x2)=a2x2 +C.

例 7. ∫ d x x ( 1 + x ) \displaystyle\int\frac{dx}{\sqrt{x}(1+x)} x (1+x)dx

I = ∫ 2   d ( x ) 1 + ( x ) 2 = 2 arctan ⁡ ( x ) + C . I=\displaystyle\int\frac{2\ d(\sqrt{x})}{1+(\sqrt{x})^2}=2\arctan(\sqrt{x})+C. I=1+(x )22 d(x )=2arctan(x )+C.

例 8. ∫ 1 a 2 + x 2   d x \displaystyle\int\frac{1}{a^2+x^2}\,dx a2+x21dx (公式16)

I = 1 a 2 ∫ a ⋅ d ( x a ) 1 + ( x a ) 2 = 1 a arctan ⁡ x a + C . I=\displaystyle\frac{1}{a^2}\int\frac{a\cdot d(\displaystyle\frac{x}{a})}{1+(\displaystyle\frac{x}{a})^2}=\frac{1}{a}\arctan\frac{x}{a}+C. I=a211+(ax)2ad(ax)=a1arctanax+C.

例 9. ∫ tan ⁡ x   d x \displaystyle\int\tan x\,dx tanxdx (公式17)

I = ∫ sin ⁡ x cos ⁡ x   d x = − ∫ d ( cos ⁡ x ) cos ⁡ x = − ln ⁡ ∣ cos ⁡ x ∣ + C . I=\displaystyle\int\frac{\sin x}{\cos x}\,dx=-\int\frac{d(\cos x)}{\cos x}=-\ln|\cos x|+C. I=cosxsinxdx=cosxd(cosx)=ln∣</

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值