线性规划中的人工变量与松弛变量

本文探讨线性规划中的人工变量和松弛变量。人工变量用于构成单纯形表,目标函数系数通常为-M,最终基变量应为0。松弛变量则将不等式约束转为等式,代表未利用或超出的资源,系数为0。两者在转化问题、目标函数系数和解的意义上有所不同。

1. 人工变量

人工变量是为了凑成单纯形表中的基变量而人工加入的单位向量,在目标函数中系数为-M,最后化简结果中基变量要为0,否则无可行解。化简单纯形表就可以解决,若用对偶单纯形表的话就直接能解单纯形表,不用添加人工变量。

2. 松弛变量

松弛变量(或者剩余变量)目的是将线性规划的不等式约束转化为等式约束,松弛变量或者剩余变量分别表示在实际问题中未被充分利用的资源和超出的资源数,均未被转化为价值和利润,因此引进模型后他们在目标函数中的系数均为零。

若所研究的线性规划模型的约束条件全是小于类型,那么可以通过标准化过程引入M个非负的松弛变量。

松弛变量的引入常常是为了便于在更大的可行域内求解。若为0,则收敛到原有状态,若大于零,则约束松弛。

具体而言,对线性规划问题的研究是基于标准型进行的。因此对于给定的非标准型线性规划问题的数学模型,则需要将其化为标准型。这也算是运筹学以及优化问题中的典型做法,即将很多问题简化和标准化为统一的形式,因此实现求解。

一般地,对于不同形式的线性规划模型,可以采用一些方法将其化为标准型。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱听雨声的北方汉

你的鼓励是我努力前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值