斯坦福 Algorithms: Design and Analysis 2 第一周作业
来自斯坦福网站的Algorithms: Design and Analysis,与目前coursera上的版本内容没有变化,不过时间安排略有不同。
1. Problem Set 1
按照提示, R j R_{j} Rj表示按结束时间升序排序的第j个任务,设其结束时间为 S j S_{j} Sj。那么这个任务占用的时间就是 [ S j − 1 , S j ] [S_{j-1},S_{j}] [Sj−1,Sj]。其它的任何任务i占用的时间都是 [ S j − 1 , S i ] [S_{j-1},S_{i}] [Sj−1,Si],而根据设定 S i ≥ S j S_{i} \geq S_{j} Si≥Sj,也就是说选择 R j R_{j} Rj占用的时间段初试时间与其它所有任务相同,而结束时间比选择其它的都短,因此与最少的任务重叠。
刚开始我觉得应该按 d j − p j d_{j}-p_{j} dj−pj来排序,后来发现用 d j d_{j} dj就可以了。证明过程与课程中的证明很类似。按照 d j d_{j} dj升序得到的解法 α \alpha α的表示为[1,2,3,…,n],而假设最优解 α ∗ \alpha* α∗与