机器学习-支持向量机(SVM)

支持向量机(SVM)是一种广义线性分类器,通过寻找最大边距超平面进行分类。它使用铰链损失函数和正则化项优化结构风险。SVM通过核方法能处理非线性问题,常见的核函数有线性、多项式和高斯核。线性SVM分为硬边距和软边距两种,非线性SVM通过将数据映射到高维空间实现。求解SVM的方法包括内点法、序列最小优化和随机梯度下降。
摘要由CSDN通过智能技术生成

概述

支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane) 。
SVM使用铰链损失函数(hinge loss)计算经验风险(empirical risk)并在求解系统中加入了正则化项以优化结构风险(structural risk),是一个具有稀疏性和稳健性的分类器 。SVM可以通过核方法(kernel method)进行非线性分类,是常见的核学习(kernel learning)方法之一。

由简至繁的模型包括:

  • 当训练样本线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机;
  • 当训练样本近似线性可分时,通过软间隔最大化,学习一个线性支持向量机;
  • 当训练样本线性不可分时,通过核技巧和软间隔最大化,学习一个非线性支持向量机;

理论

线性分类

在这里插入图片描述
线性可分性(linear separability)
在分类问题中给定输入数据和学习目标:
在这里插入图片描述
其中输入数据的每个样本都包含多个特征并由此构成特征空间(feature space)
在这里插入图片描述
而学习目标为二元变量
在这里插入图片描述
表示负类(negative class)和正类(positive class)。

若输入数据所在的特征空间存在作为决策边界(decision boundary)的超平面将学习目标按正类和负类分开,并使任意样本的点到平面距离大于等于1。
在这里插入图片描述
则称该分类问题具有线性可分性,参数w,b分别为超平面的法向量和截距
满足该条件的决策边界实际上构造了2个平行的超平面作为间隔边界以判别样本的分类:
在这里插入图片描述
所有在上间隔边界上方的样本属于正类,在下间隔边界下方的样本属于负类。两个间隔边界的距离
在这里插入图片描述
被定义为边距(margin),位于间隔边界上的正类和负类样本为支持向量(support vector)。

损失函数

在这里插入图片描述
损失函数(loss function)在一个分类问题不具有线性可分性时,使用超平面作为决策边界会带来分类损失,即部分支持向量不再位于间隔边界上,而是进入了间隔边界内部,或落入决策边界的错误一侧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值