基本思想
拉格朗日乘子法适用于求解等式约束(另外两种情况是无约束和不等式约束)条件下的最优问题。但是此方法能得到最优解只是必要条件,当目标函数是凸函数的时候,才是充分必要条件。
维基百科有对其思想的生动解释,传送门:拉格朗日乘数
运用过程
假设需要求极值的目标函数(objectivefunction)为f(x,y),限制条件为φ(x,y)=M:
1.令g(x,y)=M-φ(x,y),定义新函数
F(x,y,λ)=f(x,y)−λg(x,y)
2.对F(x,y,λ)求偏导,等式均等于0。
∂F∂x=0
∂F∂y=0
∂F∂λ=0
3.求出x,y,λ的值,代入即可得到目标函数的极值
参考:
1.百度百科
2.拉格朗日乘子法和KKT条件