拉格朗日乘子法

基本思想

拉格朗日乘子法适用于求解等式约束(另外两种情况是无约束和不等式约束)条件下的最优问题。但是此方法能得到最优解只是必要条件,当目标函数是凸函数的时候,才是充分必要条件
维基百科有对其思想的生动解释,传送门:拉格朗日乘数

运用过程

假设需要求极值的目标函数(objectivefunction)为f(x,y),限制条件为φ(x,y)=M:
1.令g(x,y)=M-φ(x,y),定义新函数

F(x,y,λ)=f(x,y)λg(x,y)

2.对F(x,y,λ)求偏导,等式均等于0。
Fx=0
Fy=0
Fλ=0

3.求出x,y,λ的值,代入即可得到目标函数的极值

参考:
1.百度百科
2.拉格朗日乘子法和KKT条件

内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
拉格朗日乘子法是一种优化算法,应用于具有约束条件的优化问题。它的原理是基于拉格朗日乘子的概念,在求解有约束问题的时候,将约束条件转化为目标函数的一部分,通过求解该新的目标函数,得到问题的最优解。 在使用拉格朗日乘子法时,首先根据问题的约束条件构造拉格朗日函数。拉格朗日函数是由目标函数和约束条件组成的,目标函数会被调整为加入拉格朗日乘子与约束条件的乘积,同时每个约束条件都会有一个对应的拉格朗日乘子。然后,通过求取拉格朗日函数的偏导数,将其等于0,可以得到一组方程,包括目标函数的梯度和约束条件的梯度。将这些方程联立求解,就可以得到问题的最优解。 对于拉格朗日函数的求解,可以采用数值方法,例如使用fmincon算法。fmincon是一种非线性约束最小化算法,可以求解具有非线性约束的优化问题。它的实现基于拉格朗日乘子法,通过迭代的方式逼近最优解。在每一次迭代中,通过求解一组子问题,不断调整拉格朗日乘子的值,直到找到最优解为止。 总之,拉格朗日乘子法是一种基于拉格朗日函数的优化算法,通过将约束条件转化为目标函数的一部分,再利用数值方法求解最优解。而fmincon算法则是一种具体的数值方法实现,可以应用于求解具有非线性约束的优化问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值