拉格朗日乘子法

基本思想

拉格朗日乘子法适用于求解等式约束(另外两种情况是无约束和不等式约束)条件下的最优问题。但是此方法能得到最优解只是必要条件,当目标函数是凸函数的时候,才是充分必要条件
维基百科有对其思想的生动解释,传送门:拉格朗日乘数

运用过程

假设需要求极值的目标函数(objectivefunction)为f(x,y),限制条件为φ(x,y)=M:
1.令g(x,y)=M-φ(x,y),定义新函数

F(x,y,λ)=f(x,y)λg(x,y)

2.对F(x,y,λ)求偏导,等式均等于0。
Fx=0
Fy=0
Fλ=0

3.求出x,y,λ的值,代入即可得到目标函数的极值

参考:
1.百度百科
2.拉格朗日乘子法和KKT条件

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值