NPL Stanford-4.神经网络入门

本文介绍了神经网络的基础,从单个神经元开始,讲解了单层神经网络、前馈计算以及最大间隔目标函数的概念。还探讨了反向传播在参数更新中的作用,并提到了梯度下降法。内容适合NLP与深度学习初学者。
摘要由CSDN通过智能技术生成

NPL Stanford-4.NPL with DL

@(NPL)[阅读笔记]

1. 从一个神经元开始

神经元是神经网络最基本的组成成分,它接收n个输入,产生单个输出。不同的神经元有着不同的参数(或称为权重),但本质上来说它依然在计算,使用某个特定的计算公式。神经元的计算公式(被称为激活函数(activition function)),最常用的就比如下面的sigmoid函数,它接收了n维向量 x ,产生了输出 a
注: w 是同样n维的权重向量, b 是偏差(bias)。

a=11+exp((wTx+b))

图示

这里写图片描述)

2. 单层神经网络

单层神经网络就是多个神经元的排列,对每个神经元而言,他们接受一样的输入(注:不是全部模型都是接受相同的输入,此处方便理解),却可能产生完全不同的输出。原因在于每一个神经元的权重向量和偏差不一样,可以认为这是对输入向量不同特征的考量。

这里写图片描述

为了表示方便,我们定义如下:

这里写图片描述

其中 z=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值