NPL Stanford-4.NPL with DL
@(NPL)[阅读笔记]
1. 从一个神经元开始
神经元是神经网络最基本的组成成分,它接收n个输入,产生单个输出。不同的神经元有着不同的参数(或称为权重),但本质上来说它依然在计算,使用某个特定的计算公式。神经元的计算公式(被称为激活函数(activition function)),最常用的就比如下面的sigmoid函数,它接收了n维向量 x ,产生了输出
注: w 是同样n维的权重向量,
a=11+exp(−(wTx+b))
图示
)
2. 单层神经网络
单层神经网络就是多个神经元的排列,对每个神经元而言,他们接受一样的输入(注:不是全部模型都是接受相同的输入,此处方便理解),却可能产生完全不同的输出。原因在于每一个神经元的权重向量和偏差不一样,可以认为这是对输入向量不同特征的考量。
为了表示方便,我们定义如下:
其中 z=