用R分析视频数据

logistic回归实现是否看过给部电影

summary(video)

通过逻辑回归判断看这部电影的概率

fit<-glm(video~gender+age+education+occupation,data=video,family=binomial())

summary(fit)

去掉不显著变量

在建立一次逻辑回归


使用预测数据进行预测

testdatapre<-predict(fit,newdata=testdata,type="response")



使用随机森林实现多分类即找到具有哪些特征的群体看哪类电影

install.packages("randomForest")

install.packages("foreign")

library(random)

library(foreign)

train<-read.csv("D:\\vedio.csv");

ind<-sample(2,nrow(training),repalce=TRUE,prob=c(0.7,0.3));

traindata<-training[ind==1,];

testdata<-training[ind==2,];

rf<-randomForest(y~,data=training,ntree=100,proxinity=TRUE);

table(predict(rf),training$y);

summary(rf);

plot(rf);

importance(rf);

rf.predict<-predict(rf,data=test);




对视频的标题,评论进行分词,绘制词云。



聚类

kc<-kmeans(train,5);

plot(train[c("user","item")],col=kc$cluster,pch=as.interger(train$rating);

阅读更多
上一篇spark做视频推荐
下一篇R的神经网络包
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭