20斤芹菜肉包子
码龄10年
关注
提问 私信
  • 博客:35,140
    35,140
    总访问量
  • 19
    原创
  • 2,277,070
    排名
  • 12
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2015-01-07
博客简介:

锟金铐鏜鏜鏜

博客描述:
Hello Guys
查看详细资料
个人成就
  • 获得14次点赞
  • 内容获得1次评论
  • 获得75次收藏
创作历程
  • 1篇
    2020年
  • 22篇
    2018年
成就勋章
TA的专栏
  • 论文阅读
    1篇
  • 数据预处理
    1篇
  • 公众号文章
    5篇
  • 西瓜书
    6篇
  • 神经网络
    5篇
  • 机器学习实战
    4篇
  • ICV
    1篇
  • linux
  • 大数据处理
    1篇
  • python
    1篇
  • 机器学习精研
    1篇
  • tensorflow
    2篇
兴趣领域 设置
  • 数据结构与算法
    算法
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【数据增广】无监督增广——RandAugment

一年多没有写博客了,一转眼回国就入职了。最近在从事关于计算机视觉方面的工作,一方面也是为了记录自己平日学习的点滴与思考养成良好的阅读习惯,另一方面也是为自己的知识技能库做一些储备。言归正传,我们来看论文。这是2019年9月由google brain团队发布的一篇关于无监督数据增广的文章,名称为RandAugmentation:Practical automated data augmenta...
原创
发布博客 2020.01.30 ·
4210 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

【从零开始深度学习】——3、如何搭建一个单隐层神经网络

本章将利用numpy搭建一个单隐层的神经网络,选择2个输入单元,4个隐藏单元和2个输出单元。神经网络的搭建由以下六个步骤完成:1、定义神经网络结构2、初始化模型参数(w和b)3、前向传播算法结构设计4、损失函数定义5、反向传播算法结构设计6、权值迭代与更新算法结构设计7、封装代码,整合模型便于直接调用在进行神经网络的构建之前,首先需要定义神经网络的结构网络结构的定义伪代码...
原创
发布博客 2018.10.23 ·
732 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

【从零开始深度学习】——2、神经网络的初探与实现

【引言】深度学习就像一个黑箱子,在了解了基本的tensorflow框架后,将已经经过预处理的图像输入tf就可以给出预测的结果,但终究只是停留在表面功夫,若想了解深度学习、神经网络相关的tf框架中的工作原理并有所深入了解,那我们还需把箱子打开一探究竟。正如我在【西瓜书笔记】——神经网络中所记录到的,从感知机开始到前馈神经网络再到BP神经网络,这无非是神经网络中最基本的3个知识点。深度神经网络就是在...
原创
发布博客 2018.10.22 ·
278 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【从零开始深度学习】——1、初识Tensorflow

1、什么是TensorflowTensor:张量,或表示多维数组。对于不同维度下的定义不同:对于0矩阵,Tensor就是一个数“0”;而在一维情况下就是一维数组,高维情况下就是高维矩阵。Flow:起飞的意思,体现TensorFlow的计算模型。而TensorFlow的一切都是围绕图结构开始的。计算图是Tensorflow中最基本的概念,也是它有别于Numpy等python工具包之处。Tens...
原创
发布博客 2018.10.22 ·
327 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【机器学习实战】——SVM支持向量机

【引言】SVM可以说是目前最好的现成的分类器,即不加任何修改就可以直接使用。本文对应《机器学习实战》第六章内容,具体理论知识可以联系西瓜书第七章内容和博客笔记,此处只介绍SMO算法的实现与学习心得,以及关于核函数的选择和实现。1、基于最大间隔分隔数据支持向量机:优点:泛化错误率低,计算开销小,可解释性强;缺点:调参工作量大,核函数敏感性强;适用数据类型:标称型和数值型线性可分:在...
原创
发布博客 2018.10.22 ·
316 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【西瓜书笔记】——支持向量机(SVM)

【引言】支持向量机可作回归也可作分类,其主要思想是旨在建立一个WX+b的超平面,对高维样本空间进行数据拟合或划分。支持向量机的核心内容为核函数和凸优化问题,意在寻找合适的参数矩阵W和位移项b从而找到最合适的支持向量机。1、间隔与支持向量分类学习最基本的想法是基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开。但是同一个样本空间中划分超平面有许多,而支持向量机就是旨在寻找最优的...
原创
发布博客 2018.10.17 ·
803 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

【西瓜书笔记】——神经网络

本文对应周志华——《机器学习》第五章·神经网络1、神经元模型神经网络是由具有适应性的简单单元组成的广泛并行互联的网络,它的组织能够模拟生物神经系统对真实世界物体所做出的交互反应。神经元模型:是神经网络最基本的成分。当通过神经元的信息信好超过某一个阈值,那么该神经元就会激活,从而作用于下一个神经元。M-P神经元模型:神经元连接来自收到来自n个其他神经元传递来的输入信号,与权重结合进行传递。...
原创
发布博客 2018.10.14 ·
2502 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

【ICV】——week1-Lecture 课堂笔记

本板块将记录QMUL大学MSc Computer Vision 模块ECS709P-CourseWork导师:Andrea Cavallaro课程教材:Computer Vision Algorithms and ApplicationsWeek1Lab slot as usual (with Demonstrator)No Class (use this slot as indiv...
原创
发布博客 2018.10.14 ·
243 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【西瓜书笔记】——第二章:模型评估与选择

经验误差与过拟合错误率:分类错误的样本数占样本总数的比例 精度:精度=1-错误率误差:学习器的实际预测输出与样本的真是输出之间的差异 其中: 训练误差或经验误差:指的是学习器在训练集上的误差 泛化误差:指的是学习器在新样本上的误差因此,我们希望得到泛化误差小的学习器,但在事先不知道新样本是什么样的情况下智能努力使经验误差最小化。为了达到该目的,应该从训练样本中尽可能学出适用于所...
原创
发布博客 2018.10.14 ·
978 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

【机器学习精研】——5种常见的回归损失函数

【引言】所有机器学习算法都旨在最小化或最大化目标函数,其中,将目标函数最小化的过程称为损失函数。损失函数:是衡量预测模型预测期望结果表现的指标。常用方法为梯度下降法,通过设置一定的步长,让函数在求导的过程中逐渐逼近谷值。而损失函数往往因为机器学习算法的类别分为回归损失函数和分类损失函数。1、回归损失函数,常见的有:1、最小平方误差法(MSE)2、平均绝对值误差法(MAE)3、平滑平均绝...
原创
发布博客 2018.10.14 ·
1347 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【python精研】

1、函数式global:在函数内,def后声明global则只允许在函数体内对变量进行访问,无法作出修改。def func(): global a a = 1 return a print(func()) #结果为1======此时再输入a = 2print(func()) #结果为1print(a) #结果依旧为1map(函数, 对象):映射函数,按顺序执行内容,传递...
原创
发布博客 2018.10.14 ·
196 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【BDP】——week2-Lecture课堂笔记

Contents·Apache Hadoop·The Combiner·MapReduce aggregate computation2018年10月5日[参考链接:]https://www.cnblogs.com/riordon/p/4605022.html1、什么是MapReduceMapReduce是一种并行可扩展计算模型,并且有较好的容错性,主要解决海量离线数据的批处理。其...
原创
发布博客 2018.10.05 ·
274 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【机器学习实战】——决策树&树回归

【摘要】本文对应《机器学习实战》——第三章和第九章:决策树和树回归对应周志华《机器学习》第四章:决策树内容大纲:第三章:决策树简介、数据集中度量一致性、递归构造决策树、Matplotlib绘制树形图;第九章:CART算法、回归与模型树、树剪枝算法以及Python中GUI的使用第三章:决策树【引言】决策树的概念就是:给定一组数据(正例和反例),根据一系列推断规则,将数据的分类结果反馈...
原创
发布博客 2018.10.02 ·
600 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【西瓜书笔记】——第四章:决策树

本章对应于周志华——《机器学习》书本P73页,第四章:决策树。【引言】决策树是基于树结构来进行决策的,可以类比于常见的if条件语句。一般对于二分类,其判断过程就被称为“决策”或“判定”的过程。而前一轮的决策结果便是下一轮的必然前提,最终的决策结论对应了我们所希望的判定结果。1、基本流程【概念】:一颗决策树包含一个根结点、若干个内部结点和若干个叶结点。叶结点对应于决策结果,其他每个结点则对应...
原创
发布博客 2018.09.29 ·
1163 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【机器学习实战】——预测数值型数据:回归

【引言】本章节代码实现基于python3.7环境同部西瓜书学习,对应《机器学习实战》第八章——预测数值型数据:回归(Page136-158)本章首先介绍线性回归,包括其名称的由来和python实现。在这之后引入了局部平滑技术,分析如何更好地拟合数据。接下来,本章将探讨回归在欠拟合情况下地缩减技术,探讨偏差和方差的概念。最后将融合所有技术,预测鲍鱼的年龄和玩具的售价。此外还将介绍一些pytho...
原创
发布博客 2018.09.24 ·
1125 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【西瓜书笔记】——第三章:线性模型

1、基本形式定义:最简单的线性函数为:f(x)=wx+bf(x) = wx + bf(x)=wx+b将其扩展为矩阵形式,其中xi=(xi1,xi2,xi3,…,xij)Tx_i=(x_{i1},x_{i2},x_{i3}, …, x_{ij})^Txi​=(xi1​,xi2​,xi3​,…,xij​)T表示对于单个样本xi,它拥有j个不同的特征,而针对每个特征的重要度不同,自然有权重矩阵:...
原创
发布博客 2018.09.23 ·
925 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【公众号文章】——反向传播算法

链接:https://mp.weixin.qq.com/s/YBOHt1WKuA1-NaqRtbimxA原文:http://www.cnblogs.com/pinard/p/6422831.html1、DNNs反向传播算法要解决的问题在了解DNNs的反向传播算法前,我们先要知道DNNs反向传播算法要解决的问题,也就是说,什么时候我们需要这个反向传播算法?回到监督学习的一般问题中,假设...
转载
发布博客 2018.09.18 ·
222 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【公众号文章】——机器学习必知的8大神经网络架构和原理

链接:https://mp.weixin.qq.com/s/K1XPNmNFgSQ6q70EX3EsfQ###引言1、
原创
发布博客 2018.09.18 ·
339 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【神经网络】——生成式对抗网络(GANs)的快速理解

链接: https://mp.weixin.qq.com/s/1Wiewk_tdzTFvRZInnjiIw生成式对抗网络(GANs)生成式对抗网络(GAN)是一个最新的研究领域,主要用在计算机视觉方面的图像生成和NLP方面的生成式对话内容。简单说:就是机器可以根据需要生成新的图像和对话内容。【摘要】GAN是由Goodfellow等人于2014年设计的生成模型。在GAN设置中,两个...
原创
发布博客 2018.09.17 ·
13153 阅读 ·
4 点赞 ·
0 评论 ·
38 收藏

【公众号文章】——机器学习中的损失函数

机器学习种的损失函数作者:Ravindra Parmar 来源:towards data science, 机器之心 链接: https://mp.weixin.qq.com/s/wSFTLHnCpNtIZHKIMuvyzg损失函数(Loss Function)不同于激发函数(Activation Function),是指一种将样本空间中的一个样本,通过某种映射关系,解释为某种结...
转载
发布博客 2018.09.16 ·
3288 阅读 ·
2 点赞 ·
0 评论 ·
19 收藏
加载更多