【从零开始深度学习】——3、如何搭建一个单隐层神经网络

本章将利用numpy搭建一个单隐层的神经网络,选择2个输入单元,4个隐藏单元和2个输出单元。

神经网络的搭建由以下六个步骤完成:

1、定义神经网络结构
2、初始化模型参数(w和b)
3、前向传播算法结构设计
4、损失函数定义
5、反向传播算法结构设计
6、权值迭代与更新算法结构设计
7、封装代码,整合模型便于直接调用

在进行神经网络的构建之前,首先需要定义神经网络的结构

网络结构的定义

伪代码

def 结构函数(样本集,标签集)
	定义输入层神经元个数
	定义隐层神经元个数(这里我们简单设置单元数为4)
	定义输出层神经元个数
	return (输入层神经元个数,隐层神经元个数,输出层神经元个数)

程序实现

def layer_sizes(X, Y):
    n_x = X.shape[0]
    n_h = 4
    n_y = Y.shape[0]
    return (n_x, n_h, n_y)

接着,需要初始化我们的模型参数
【回顾】
权值w:连接层与层之间各神经元间的权重
偏置单元b:隐层、输出层作为输出时加上的偏值

初始化模型参数

伪代码如下:

def 初始化模型参数(输入层神经元个数,隐层神经元个数,输出层神经元个数)
	权值1 = <输入层单元→隐层>间的权值参数(用于计算w*x)
	偏值1 = <隐层偏置单元>加上的偏值(b,用于计算w*x + b)
	权值2 = <隐层→输出层>间的权值参数(用于计算w*hid_x)
	偏值2 = <输出层偏置单元>加上的偏值(b2, 用于计算w*hid_x + b)
	将初始化的参数放入数据字典pararameters{}
	return parameters

程序实现

def initialize_parameters(n_x, n_h, n_y):
	#这里之所以n_h在前,n_x在后,因为w是根据隐层单元个数决定了行数,列数由输入层单元决定
	#这里在w的初始化中用到了random随机数生成方法
	#在b的初始化中用到了zeros方法
    W1 = np.random.randn(n_h, n_x)*0.01
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h)*0.01
    b2 = np.zeros((n_y, 1)) 
   
    assert (W1.shape == (n_h, n_x))    
    assert (b1.shape == (n_h, 1))    
    assert (W2.shape == (n_y, n_h))    
    assert (b2.shape == (n_y, 1))

    parameters = {"W1": W1, 
                  "b1": b1,                 
                  "W2": W2,                  
                  "b2": b2}   
                   
    return parameters

以上就是前期的准备工作,当准备工作完成后,就可以开始神经网络算法核心部分——前向传播,损失计算与反向传播的构建了


前向传播函数构建

【回顾】
隐层原始数据:接收输入层的数据X,对其作加权w1处理,并加上偏值b1
隐层激活函数:选择tanh双曲正切函数
隐层输出数据:Z1 = tanh(隐层原始数据)

输出层原始数据:接收隐层传出的数据Z1,对其作加权w2处理,并加上偏值b2
输出层激活函数:Sigmoid函数(可调用numpy的,也可使用自定义的)
输出层预测结果:Z2 = sigmoid(输出层原始数据)

伪代码如下:

def 前向传播算法(样本集X,初始化的字典parameters{})
	输入→隐层权值W1 = 参数字典["W1"]
	隐层偏值b1 = 参数字典["b1"]
	隐层→输出层权值W2 = 参数字典["W2"]
	输出层偏值b2 = 参数字典["b2"]

	隐层原始数据Z1 = W1 * X + b1
	隐层输出数据A1 = tanh(Z1)

	输出层原始数据Z2 = W2 * A1 + b2
	输出层预测结果A2 = sigmoid(Z1)
	
	将计算后的Z1, A1, Z2, A2保存到数据字典cache里
	return cache

程序清单

def forward_propagation(X, parameters):
    # Retrieve each parameter from the dictionary "parameters"
    W1 = parameters['W1']
    b1 = parameters['b1']
    W2 = parameters['W2']
    b2 = parameters['b2']    
    # Implement Forward Propagation to calculate A2 (probabilities)
    Z1 = np.dot(W1, X) + b1
    A1 = np.tanh(Z1)
    Z2 = np.dot(W2, Z1) + b2
    A2 = sigmoid(Z2)    
    assert(A2.shape == (1, X.shape[1]))


    cache = {"Z1": Z1,                   
             "A1": A1,                   
             "Z2
  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值