【公众号文章】——机器学习中的损失函数

机器学习种的损失函数

作者:Ravindra Parmar
来源:towards data science, 机器之心
链接:
https://mp.weixin.qq.com/s/wSFTLHnCpNtIZHKIMuvyzg


损失函数(Loss Function)不同于激发函数(Activation Function),是指一种将样本空间中的一个样本,通过某种映射关系,解释为某种结果的一种函数。更通俗地说,在统计学中,损失函数是一种衡量损失和错误程度的函数。

机器通过损失函数进行学习。这是一种用于评估算法在给定数据情况下,衡量泛化程度的方法。如果预测值与实际结果偏离较远,损失函数会得到一个非常大的值。在一些优化函数的辅助下,损失函数逐渐学会减少预测值的误差。


损失函数并不唯一,也并不具备绝对性

并非所有的机器学习算法都有其最适合的损失函数。往往需要对损失函数进行选择。而针对特定问题,选择损失函数又涉及到许多因素:如所选机器学习算法的类型、是否易于计算导数以及数据集中异常值所占比例。


回归损失函数与分类损失函数

广义上,根据学习任务的类型划分,可以将损失函数分为回归和分类损失函数两大类

回归任务:用于处理连续值得预测问题(诸如给定房屋面积、房屋数量以及房间的大小,预测房屋得价格)。
分类任务:用于从类别值有限的数据集中预测输出(比如给定一个手写数字图像的数据集,将其按照0-9进行分类)


回归损失

1、均方误差 / 平方误 / L2损失

这里写图片描述
均方误差公式

均方误差(MSE)度量的是预测值和实际观测值间差的平方的均值。它只考虑误差的平均大小,不考虑其方向。但由于经过平方,与真实值偏离较多的预测值会比偏离较少的预测值受到更多的惩罚。再加上 MSE 的数学特性很好,这使得计算梯度变得更容易

import numpy as np
y_hat = np.array([0.000, 0.166, 0.333])
y_true = np.array([0.000, 0.254, 0.998])
def rmse(predictions, targets):
    differences = predictions - targets
    differences_squared = differences ** 2
    mean_of_differences_squared = differences_squared.mean()
    rmse_val = np.sqrt(mean_of_differences_squared)
    return rmse_val
print("d is: " + str(["%.8f" % elem for elem in y_hat]))
print("p is: " + str(["%.8f" % elem for elem in y_true]))
rmse_val = rmse(y_hat, y_true)
print("rms error is: " + str(rmse_val))

2、平均绝对误差 / L1损失
这里写图片描述
平方绝对误差公式

平均绝对误差(MAE)度量的是预测值和实际观测值之间绝对差之和的平均值。和 MSE 一样,这种度量方法也是在不考虑方向的情况下衡量误差大小。但和 MSE 的不同之处在于,MAE 需要像线性规划这样更复杂的工具来计算梯度。此外,MAE 对异常值更加稳健,因为它不使用平方。

import numpy as np
y_hat = np.array([0.000, 0.166, 0.333])
y_true = np.array([0.000, 0.254, 0.998])

print("d is: " + str(["%.8f" % elem for elem in y_hat]))
print("p is: " + str(["%.8f" % elem for elem in y_true]))

def mae(predictions, targets):
    differences = predictions - targets
    absolute_differences = np.absolute(differences)
    mean_absolute_differences = absolute_differences.mean()
    return mean_absolute_differences
mae_val = mae(y_hat, y_true)
print ("mae error is: " + str(mae_val))

3、平均偏差误差(MBE)

这里写图片描述
平均偏差误差

与其它损失函数相比,这个函数在机器学习领域没有那么常见。它与 MAE 相似,唯一的区别是这个函数没有用绝对值。用这个函数需要注意的一点是,正负误差可以互相抵消。尽管在实际应用中没那么准确,但它可以确定模型存在正偏差还是负偏差


分类损失

1、Hinge Loss / 多分类SVM损失

这里写图片描述
SVM损失(Hinge Loss)

在一定的安全间隔内(通常是 1),正确类别的分数应高于所有错误类别的分数之和。因此 hinge loss 常用于最大间隔分类(maximum-margin classification),最常用的是支持向量机。尽管不可微,但它是一个凸函数,因此可以轻而易举地使用机器学习领域中常用的凸优化器。

【例】又三个训练样本,要预测三个类别(狗、猫和马)。以下是通过算法预测出来的每一类的值:

这里写图片描述
Hinge Loss

计算这3个训练样本的hinge loss:

## 1st training example
max(0, (1.49) - (-0.39) + 1) + max(0, (4.21) - (-0.39) + 1)
max(0, 2.88) + max(0, 5.6)
2.88 + 5.6
8.48 (High loss as very wrong prediction)
## 2nd training example
max(0, (-4.61) - (3.28)+ 1) + max(0, (1.46) - (3.28)+ 1)
max(0, -6.89) + max(0, -0.82)
0 + 0
0 (Zero loss as correct prediction)
## 3rd training example
max(0, (1.03) - (-2.27)+ 1) + max(0, (-2.37) - (-2.27)+ 1)
max(0, 4.3) + max(0, 0.9)
4.3 + 0.9
5.2 (High loss as very wrong prediction)

2、交叉熵损失 / 负对数似然

交叉熵损失
交叉熵损失

这是分类问题中最常见的设置。随着预测概率偏离实际标签,交叉熵损失会逐渐增加。

当实际标签为 1(y(i)=1) 时,函数的后半部分消失,而当实际标签是为 0(y(i=0)) 时,函数的前半部分消失。简言之,我们只是把对真实值类别的实际预测概率的对数相乘。还有重要的一点是,交叉熵损失会严惩那些置信度高但是错误的预测值

import numpy as np
predictions = np.array([[0.25,0.25,0.25,0.25],
                        [0.01,0.01,0.01,0.96]])
targets = np.array([[0,0,0,1],
                   [0,0,0,1]])
def cross_entropy(predictions, targets, epsilon=1e-10):
    predictions = np.clip(predictions, epsilon, 1. - epsilon)
    N = predictions.shape[0]
    ce_loss = -np.sum(np.sum(targets * np.log(predictions + 1e-5)))/N
    return ce_loss
cross_entropy_loss = cross_entropy(predictions, targets)
print ("Cross entropy loss is: " + str(cross_entropy_loss))
  • 2
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于强化学习的五子棋强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一。它主要用于描述和解决智能体(agent)在与环境的交互过程通过学习策略以达成回报最大化或实现特定目标的问题。强化学习的特点在于没有监督数据,只有奖励信号。 强化学习的常见模型是标准的马尔可夫决策过程(Markov Decision Process, MDP)。按给定条件,强化学习可分为基于模式的强化学习(model-based RL)和无模式强化学习(model-free RL),以及主动强化学习(active RL)和被动强化学习(passive RL)。强化学习的变体包括逆向强化学习、阶层强化学习和部分可观测系统的强化学习。求解强化学习问题所使用的算法可分为策略搜索算法和值函数(value function)算法两类。 强化学习理论受到行为主义心理学启发,侧重在线学习并试图在探索-利用(exploration-exploitation)间保持平衡。不同于监督学习和非监督学习,强化学习不要求预先给定任何数据,而是通过接收环境对动作的奖励(反馈)获得学习信息并更新模型参数。强化学习问题在信息论、博弈论、自动控制等领域有得到讨论,被用于解释有限理性条件下的平衡态、设计推荐系统和机器人交互系统。一些复杂的强化学习算法在一定程度上具备解决复杂问题的通用智能,可以在围棋和电子游戏达到人类水平。 强化学习在工程领域的应用也相当广泛。例如,Facebook提出了开源强化学习平台Horizon,该平台利用强化学习来优化大规模生产系统。在医疗保健领域,RL系统能够为患者提供治疗策略,该系统能够利用以往的经验找到最优的策略,而无需生物系统的数学模型等先验信息,这使得基于RL的系统具有更广泛的适用性。 总的来说,强化学习是一种通过智能体与环境交互,以最大化累积奖励为目标的学习过程。它在许多领域都展现出了强大的应用潜力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值