矩阵的范数和条件数(Norms and Condition Numbers)

本文探讨了矩阵的范数,包括正定对称矩阵的范数计算,并阐述了不论矩阵是否对称,如何计算2范数。此外,还介绍了矩阵条件数的概念,它用于衡量解矩阵方程时由于误差导致的解的变化比例,特别是当矩阵接近奇异时的重要性。
摘要由CSDN通过智能技术生成
  • 矩阵的范数
    ∥ A ∥ = max ⁡ x ≠ 0 ∥ A x ∥ ∥ x ∥ \|A\|=\max _{\boldsymbol{x} \neq 0} \frac{\|A \boldsymbol{x}\|}{\|\boldsymbol{x}\|} A=maxx=0xAx

对于一个正定对称矩阵(positive definite symmetric matrix )而言,其范数 ∥ A ∥ = λ max ⁡ ( A ) \|A\|=\lambda_{\max }(A) A=λmax(A)

不论矩阵是否对称,其范数满足:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值