- 矩阵的范数
∥ A ∥ = max x ≠ 0 ∥ A x ∥ ∥ x ∥ \|A\|=\max _{\boldsymbol{x} \neq 0} \frac{\|A \boldsymbol{x}\|}{\|\boldsymbol{x}\|} ∥A∥=maxx=0∥x∥∥Ax∥
对于一个正定对称矩阵(positive definite symmetric matrix )而言,其范数 ∥ A ∥ = λ max ( A ) \|A\|=\lambda_{\max }(A) ∥A∥=λmax(A)
不论矩阵是否对称,其范数满足: