2020--AAAI “General Partial Label Learning via Dual Bipartite Graph Autoencoder” 论文 阅读笔记

2020--AAAI “General Partial Label Learning via Dual Bipartite Graph Autoencoder”

作者提出了一个实际但有挑战性的问题: 通用部分标签学习(General Partial Label Learning,GPLL)。相比传统的部分标签学习(Partial Label Learning,PLL)问题, GPLL将监督假设从实例级别(标签集部分标记一个实例)放到了组级别: 1)标签集部分标签了一组实例, 其中组内 instance-label link annotations 丢失, 2)组间的link是允许的——组中的实例可以部分链接到另一个组中的标签集。这种模糊的组级监督在实际场景中更实用,因为不再需要实例级的附加标注,例如,在视频中组由一个帧中的人脸组成,并在相应的标题中使用名称集进行标记,因此不再需要对实例级进行命名。为此,本文提出了一种新的图卷积网络(GCN)——Dual Bipartite Graph Autoencoder (DB-GAE)来解决GPLL的标签模糊问题。

背景

标签并不总是干净、完整和明确的。为此出现了Partial Label Learning(PPL)的任务,如下图所示:
在这里插入图片描述
这种PLL学习任务与其他一对一监督相比,可大大减少了人工标记的工作量。但在大规模情况下,PLL中实例级别的标签注释会产生高昂的开销。为此,本文作者引入了General Partial Label Learning (GPLL),如下图所示:
在这里插入图片描述
这种GPLL学习任务的数据由实例和标签数据对组成,对其进行建模更具挑战性。
在这里插入图片描述
但这些启发式方法的性能不高,无法解决极端的歧义。作者认为解决GPLL的关键是如何无监督地利用上述组间(cross-group)相关性来构建初始链接,然后使用更强的组上下文表示来完善它们。
为此,作者提出了一种新颖的图卷积网络——双重二分图自动编码器(DB-GAE),明确学习了更丰富的,互为补充的组内和组间表示。其中,组内表示解决了一个组中的歧义,而组间表示则提供了额外的全局组上下文以进一步消除歧义。

方法

本文提出了提出了一种新颖的图卷积网络—双重二分图自动编码器(DB-GAE)来解决GPLL的标签模糊问题,其算法框架如下图所示:
在这里插入图片描述

问题定义

在这里插入图片描述
在这里插入图片描述

构建双重二分图

在这里插入图片描述

构建图自动编码器

图卷积编码器。基于初始化的节点特征[X,L]和链接权重[Mwithin, Mcross],作者旨在将此类信息编码为节点表示形式以进行进一步预测。其中,图卷积模型通过传播消息来合并邻居信息,以形成节点的新表示形式。为此,作者利用此特性在传播过程中使用链接信息来获得更具代表性的节点嵌入。为了表示组内链路(within-group link)的传播,作者定义如下形式的隐藏层GCN:
在这里插入图片描述
每个层Hi对应于实例和标签特征矩阵[X,L],其中每一行是一个节点的特征表示。
• 通过聚合每个实例节点的邻居标签特征,来获取实例节点表示,步骤如下:
在这里插入图片描述构建组内/组间传播注意力机制。作者希望不断更新节点的表示形式,以通过从学习不确定性的链接中来预测链接权重。因此,必须通过考虑特征本身来动态调整实例与标签之间的传播权重。为此,作者构建了能够主动学习的注意力机制:
在这里插入图片描述Bi-linear解码器以进行链接重建。为了预测实例和标签之间的链接值,作者使用Bi-linear解码器模型(Kiros,Salakhutdinov和Zemel 2014)通过考虑节点特征相似性来重建二分图的链接。鉴于学习目标是重建观察到的链接权重(从组内初始化估计),并预测未观察到的链接的权重(组间链接),为此解码器的得分函数为:
在这里插入图片描述
构建组内重建损失函数。采用预测分数的负对数似然来最小化重构损失函数:
在这里插入图片描述

进行链接预测。对于组内链接权重,作者直接使用预测的链接权重。对于组间链接权重,作者将预测的链接权重乘以实例i特征与其同类邻居特征的余弦相似度,形式化表示如下:

在这里插入图片描述

实验

在这里插入图片描述在这里插入图片描述在这里插入图片描述

总结

在本文中,作者介绍了广义部分标记学习(GPLL)问题,它比传统的广义部分标记学习更具有现实性和通用性。并提出的方法DB-GAE,旨在通过更丰富的上下文图表示消除组内/跨组实例标签链接的歧义,从而解决GPLL的挑战。最后,作者提供了两个自动人脸命名任务的GPLL基准测试,发现DB-GAE的绝对评分为0.159,准确率为24.8%,优于最佳基线。进一步的分析也显示了DB-GAE在广义模糊场景中的鲁棒性以及各种模糊级别的影响。未来,作者希望在GPLL中引入更多的任务,如NLP中的跨域共引用解析,并在其他领域推动DB-GAE的发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值