1088滑雪(dp+搜索)

很经典的一道DP,记得大一的时候就做过,算是怀旧吧。

题意:找到最长的滑雪路径。

分析:关键在于找到起点,你可以选择枚举起点然后搜,我大一的时候就是这么做的,但是会超时,因为在搜索过程中很多路径都被重复搜了很多遍。因此要用dp,不过这个dp还不太一样,需要用递归构成解的结构。同样为了避免重复计算,需要用到记忆化搜索的方法,这个名字有点唬人,其实就是每次递归函数执行完返回前先对其计算出来的结果进行记录,下次要是再次碰到直接用就好了。这个很好理解啊,相当于在构造解之前先计算出解的子问题,毕竟递归出栈的顺序和动态规划从底向上构建解的结构的顺序是一致的。

状态转移方程:

dp( i,j ) = Max( dp( i-1, j ), dp( i, j+1 ),dp( i+1, j ), dp( i, j-1 ) ) + 1;

代码:

#include <iostream>
#include <fstream>
#include <algorithm>
using namespace std;

int map[105][105], dp[105][105];
int n, m;
int solve(int x, int y)
{
	if (dp[x][y])
		return dp[x][y];
	int MAX = 1;
	int cur_height = map[x][y];
	if (x + 1 <= n&&cur_height > map[x + 1][y])
	{
		int tmp = solve(x + 1, y) + 1;
		MAX = max(MAX, tmp);
	}
	if (x - 1 > 0&&cur_height > map[x - 1][y])
	{
		int tmp = solve(x - 1, y) + 1;
		MAX = max(MAX, tmp);
	}
	if (y + 1 <= m&&cur_height > map[x][y + 1])
	{
		int tmp = solve(x, y + 1) + 1;
		MAX = max(MAX, tmp);
	}
	if (y - 1 > 0&&cur_height > map[x][y - 1])
	{
		int tmp = solve(x, y - 1) + 1;
		MAX = max(MAX, tmp);
	}
	dp[x][y] = MAX;
	return MAX;
}

int main()
{
	//fstream cin("test.txt");
	cin >> n >> m;
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			cin >> map[i][j];
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			solve(i, j);
	int ans = 1;
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= m; j++)
			ans = max(ans, dp[i][j]);
	cout << ans << endl;
	//system("pause");
	return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值