信用货币创造和派生的原理


对银行创造信用货币,可以从一个最简单的现象说起:钱对人们来说,要么就是以现金形式存在,要么就是以账户里的电子数据形式存在。当需要现金时,便从账户里取出存款,获得现金。在一般人的意识里,钱包里的现金和银行账户里的电子账目是完全等同的。

从购买力上讲,它们是一样的。但从货币的本质上来讲,纸币和银行账户里的钱是完全两回事。如果打开钱包,抽出一张纸币,会看到上面印有“中国人民银行”几个字,它们说明这张钞票是中国的中央银行发行的;而银行账户里的钱,即以电子账目存在的货币,则是商业银行发行的信用货币,它们是在央行发行的纸币的基础上而派生出来的。人们通常认为它们相等,是因为当人们去取款的时候,央行发行的货币和商业银行创造的信用货币,两者间可以自由、等价的兑换。但是,等价兑换掩饰了两者在本质上的不同。

本文抛砖引玉,参考美联储1994年出版的这本册子《Modern Money Mechanics》,简介信用货币的创造过程,以及派生派生和货币乘数的概念。一般情况下,货币银行学的基础教材里都会有相关介绍,但笔者匆匆翻过,似乎没有哪一本国内教材像美联储的这本手册那样,把货币本质说的那么透彻。(当然国内有很多不错的民间著作,其中推荐《货币迷局-当代信用货币论》。)

了解货币创造过程,需要先了解存款和贷款的本质。存款,对银行来言是负债。笼统点说,银行的短期债务就是储户的活期存款,因为银行要支付利息,而且储户随时可能把钱取走,因此是短期负债。贷款,对银行而言是资产,因为它能够生产利息,按照国家规定,银行拥有该资产的所有权。那么,在大部分人看来,存款和贷款间的关系是,银行拿存款去放贷,但其实不然。贷款资产被通称为信用货币,但它的本质不是货币,而且是银行创造出来的一种权利,在短期内借给了借款人。

为了解这个本质,请看以下的一个例子:

甲拿着100元人民币纸币,存入A银行,A银行的负债增加100元。这时,按照国家规定,A银行要上交25%的存款准备金(假设准备金率为25%),A银行的存款便被分成:存款准备金25元、一般活期存款75元。这时,国家法律允许A银行按照除准备金外的存款金额,即75元,贷出75元的贷款。于是,A银行贷出75元给乙,资产增加75元。

此时,请看,银行接受了甲100元存款,负债增加100元,但是之后又贷出75元,这75元是从哪里来的?它显然不是从100元存款那里来的,因为在放出75元贷款后,甲账户里的100元还是存在的,甲随时可以用100元来购买商品,或取出来100现金。而且这75元也不是银行自己的钱。因此,75元的贷款是凭空创造出来的。不过,这个创造过程还是有些依据的。银行贷款75元给乙,乙是要在一定时间内还的,例如六个月。因此,银行提供给乙75元不是货币,而是对甲存在银行里那75元纸币活期存款的六个月内的使用权。即,银行说,我相信乙有能力在六个月内把本金和利息还给我,因此,我就可以先把甲存在我这75元(另外25元存在央行,不能用)的使用权暂时先借给乙,六个月后乙再把这个使用权还给我。这种使用权和纸币一样,在市场上可以流通。但是它不同于纸币,因为纸币是无限期留存的,而使用权是受时间限制的,即它会随着贷款的放出而出现,随着贷款的终结而消失。

那么,为什么我们电子账户上的钱一直存在不会消失呢?可以这样理解:微观层面上,乙可能是作生意的,拿了贷款,首先用贷款去支付员工工资,于是贷款便进入员工账上,然后再支付上游供应商,于是供应商拿了钱也去支付员工工资。进入员工账上的钱,乙和它的供应商都拿不回来的,因此长久性的停留在人们的储蓄账户上,成为社会购买力的一部分;宏观层面上,只要企业不停的向银行借款,不停的创造财富并不停的还钱,消失的贷款信用货币总会有新的贷款来填补,这样总的货币供应就不会停止。如果所以企业某一天停止借款,那么存款派生的贷款货币就会立刻消失,人们剩余的存款也会随着日常消费同时没有收入来源而不断下降。

至于派生存款和货币乘数,它们的概念也可以继续通过这个例子来说明。甲存100元,A银行负债增加100元,上存25元至央行,然后可以贷出数量上等同于剩下的存款的贷款,即75元;乙拿到75元,但是把它存到了B银行,于是B银行的存款负债增加75元,同理,按照央行规定上缴25%的存款准备金,即约19元,然后B银行再贷出等同于剩下存款金额的56元贷款给丙。至此,甲的100元被贷出两次,创造了100+75+56=231元的存款,其中,131元是通过贷款派生出的存款,货币总供应量增加。

影响派生存款的最主要因素是货币乘数,也就是存款准备金比率的倒数。每一次贷款贷出、转化为存款再存入银行时,都会有一定比例的存款要以现金形式存入央行,因此可以再次放贷的金额会按照一定比例递减。其实,如果所有存款在提交准备金后都被贷出,那么派生存款就是一个等比数列,其递减比率 q = 1 - 准备金率。那么,最初100元存款,按(1-25%)= 75%的比率,可以派生的存款总值,按等比数列求和公式可得:100/(1-q) = 100/(1-(1-25%)) = 100 / 25% = 400元。同理,若存款准备金率为20%,则派生存款的总和为100/20% = 500元。

至此,可以了解到,大家钱包里的纸币是央行发行的货币,而商业银行通过贷款派生的是信用货币,即央行货币的短期使用权。所谓信用,一是由于该使用权是基于借款人的还款信用,借款人若没能力还款,银行是不会借钱出去的,因此货币的短期使用权也不会产生;二是由于存款行为也是依赖于商业银行的信用,如果银行信用不好,没人前来存钱,那么同样也无法创造新的贷款。

通常情况下,这种使用权一但被创造,便会被不断地被再次创造,比如第二次创造的56元的货币使用权,是对那75元使用权再次借出的使用权。这里,人们或许会问,一笔存款怎么能借出好几次使用权,是的,对银行而言,法律允许它把100元央行货币的使用权借出去好几次,借给不同的人。能借出多少次,能借出多少,最主要由存款准备金率而决定。100元央行的纸币,按25%的准备金率,最多能外借出价值等同于400元的货币使用权。这种使用权的扩张,其实是增加了100元央行纸钞在整个经济体中的使用效率,提高了货币的流通速度,因此这种使用权的扩张速度,也被称为货币乘数。

至此,信用货币创造的派生的大致概念已介绍完。结束语引用美国经济学家和诺贝尔奖获得者弗里德曼(Milton Friedman)在80年代拍摄的《Freedom To Choose》电视纪录片中说过的话:“如果我去问银行家们,在填写或签收一张支票时,他们是否在创造新的货币,他们会问我是否发疯了。但是事实就是如此,银行信用货币的创造,不是通过某一银行的单一行为完成的,而是在银行间贷款和存款的交易中完成的,这时一个很简单、却至今仍鲜为人知的事实。”

附注:

处于流通体系中的现钞纸币,即那些在银行体系之外、由央行发行的基本货币,构成M0。那么,通常说的货币基础money base MB,则是钱包里(银行系统外)的纸币,再加上银行存在自己金库和存放在央行(银行系统内)的纸币。人们的活期存款加上M0,就等于M1。贷款派生存款的造钱过程,主要出现在M1这个层面。

By HartmannJG52
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值