介绍
- 2017年的工作
- 多人pose估计
- 使用bottom-up的思路
方法
- 使用CNN从图像中检测关节热点图和PAF,CNN的结构如下,关节热点的估计和PAF的估计分别用两条之路,结果结合在一起送给下一层refine,使用多层refine 的方法获得更好的结果,个人觉得多层优化并不是最大的创新,最大的创新在于PAF对于关节热点图估计的辅助作用,以及后面使用PAF进行关节匹配聚合。
- 对可能相关的关节点进行二分图匹配,使用的是匈牙利算法,链接的边权通过两点间的PAF定义,求最大值
- 使用贪婪松弛的匹配算法得到最后的匹配。(方法有4种,论文写的好混乱,没区分清)
结果
比Mask-RCNN(2018top-down)差一个点