Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

介绍

  • 2017年的工作
  • 多人pose估计
  • 使用bottom-up的思路

方法

  • 使用CNN从图像中检测关节热点图和PAF,CNN的结构如下,关节热点的估计和PAF的估计分别用两条之路,结果结合在一起送给下一层refine,使用多层refine 的方法获得更好的结果,个人觉得多层优化并不是最大的创新,最大的创新在于PAF对于关节热点图估计的辅助作用,以及后面使用PAF进行关节匹配聚合。

  • 对可能相关的关节点进行二分图匹配,使用的是匈牙利算法,链接的边权通过两点间的PAF定义,求最大值
  • 使用贪婪松弛的匹配算法得到最后的匹配。(方法有4种,论文写的好混乱,没区分清)

结果

比Mask-RCNN(2018top-down)差一个点

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值