本文原创作者:姚瑞南 AI-Agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)
目录
一、背景
不断扩充预料、优化标准问进行知识管理和维护是当前提升AI识别准确率的有效方式之一,但由于复杂业务场景的厘清具有一定困难度、用户query的理解因人而异,以及标准问的边界问题需要多方人员参与决策与判断,涉及人员可能包括算法、运营以及一线业务人员,为明确识别训练流程和多方责任人的配合、参与程度,故初步梳理一下协作和优化规则。
二、识别训练协作模式
训练侧 |
运营侧 |
算法侧 |
产品侧 |
数据分析侧 |
1、基础数据及交互对话流水问题挖掘 |
1、协同明确标准问边界问题,判断新增、修改标准问对业务指标影响 |
1、基于Badcase运营结果算法调参、模型优化 |
1、协同制定运营与标注流程,建立Baseline并对齐 |
1、提供识别训练各维度的数据指标与高频top场景报表数据支持 |
2、问题定位及汇总 |
2、结合归因分析、建议解决方案协同出具运营方案 |
2、提供算法能力、标注工具优化、产品功能的建设 |
2、推动产品功能与工具迭代,线上化一体化标注与训练,协调资源,满足各侧需求 |
2、线上化数据报表推送与解读、建议优化方向 |
3、badcase归因分析及建议解决方案 |
||||
4、语料归类,新增拓展问、新增标准问、策略及方案优化等优化动作 |
||||
5、产品能力、识别工具等建设性反馈及badcase案例累计 |
三、识别归类规则及定义
1. 间接识别归类
序号 |
一级问题归类 |
二级问题归类 |
定义 |
示例 |
解决方案 |
协作方 |
1 |
意图缺失 |
上下文缺失 |
用户输入的单句不能提取意图,需结合上下文对话信息一起理解用户具体咨询问题 |
1.可以直接发信息吗 2.请尽快啊 3.我新用户买荔枝 |
与算法沟通,根据目前识别方案看能否优化 |
算法侧 |
语义不明 |
用户query无意义/无具体含义 |
1.咋按不来花呀 2.是黄芽的蛮 |
- |
|||
意图模糊 |
用户query过于宽泛;用户query主要在描述具体事件没有说明意图;用户纯吐槽、抱怨 |
1.订单 2.首次使用,结果订单出错。手机上的订单与店里打印出的订单对不上 3.既然缺货就不要在卖了啊,平台一直在卖货,卖了还不给发,是不是把顾客都当羊肉片了想怎么涮就怎么涮啊 |
||||
2 |
拓展问缺失 |
间接识别命中标准问 |
能间接识别命中正确标准问,但不能直接识别 |
1.不想要了, |