本文原创作者:姚瑞南 AI-agent 大模型运营专家/音乐人/野生穿搭model,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)
目录
在大语言模型(LLM)飞速发展的今天,我们越来越依赖像 GPT-4、Claude、Kimi 等“超级大脑”来帮我们写文案、改代码、总结报告。但是你有没有发现——这些大脑往往是“闭门造车”,它们回答的问题只是基于“预训练”阶段的知识,对于实时信息、私有数据、工具调用基本无能为力。
这时,就需要一个“中介”,帮助 AI 模型真正连接起外部世界的数据和工具——这就是我们今天要聊的主角:
一、MCP 是什么?一座连接 AI 和现实世界的“桥梁”
🔍 定义:
**MCP(Model Context Protocol,模型上下文协议)**是由 AI 公司 Anthropic 于 2024 年提出的一套开放标准协议,它的目标是解决大模型的“信息孤岛”问题,让 AI 不再“闭门思考”,而是能访问并操作真实世界的数据与系统。
📦 MCP 的通俗比喻:
你可以把大模型想象成一个非常聪明的客服,但它住在一个没有网络的“图书馆”里,回答问题只能靠它“读过的书”。
而 MCP 就像是这个图书馆新装上的一套超强外接系统:
- ✅ 插上数据库:它可以查库存了!
- ✅ 插上 API:它能帮你订餐、发邮件!
- ✅ 插上实时信息:它终于知道现在几度、今天谁发币了!
🧠 MCP 能做什么?四大核心能力
功能 | 举例 |
实时数据访问 | 查天气、查股票、查快递、看公司数据库 |
个性化知识接入 | 读取用户本地文件、企业知识库、代码库 |
调用第三方工具 | 发邮件、建任务、提交代码、填表 |
多模型协作处理 | Claude 负责写报告,GPT-4 负责校对,RAG 检索支撑 |
📊 技术原理简述:
MCP 的执行流程可理解为一个“任务代理链”:
- 用户发起请求(例如“帮我查下明天北京天气”)
- MCP 客户端(如 Cursor 编辑器)转发给
- MCP Server(服务端),它调用对应的外部工具或数据库
- 获取数据后返回给大模型,大模型再根据上下文生成最终回复
👉 很像一个聪明的助理:“你问我一个问题,我出去查完资料,再回来给你答得明明白白。”
二、MCP 服务平台有哪些?常见平台推荐
目前 MCP 协议并不由某一家厂商垄断,它是开源标准协议,任何公司或开发者都可以基于 MCP 开发工具和服务。
以下是目前国内外较为活跃的 MCP 服务平台:
1. 🌐 MCPMarket.cn
- 定位:中文社区首个 MCP 工具市场平台
特点:
- 提供丰富的 MCP Server 示例(如天气、数据库、图像处理等)
- 支持一键部署、云端托管
- 有 Playground 实验区,可以直接和 AI 测试对话效果
📎 适合人群:中文用户、初学者、小企业研发团队
2. 🌍 MCP.so
- 定位:国际化的 MCP 服务中心
特点:
- 平台化展示多个开发者注册的 MCP Server
- 可快速试用不同服务(如 RSS 阅读、PDF 解读、股票价格接口等)
- 与 Cursor 编辑器集成友好
📎 适合人群:开源社区用户、开发者
3. 🏢 Higress MCP Marketplace
- 定位:阿里开源团队主导,面向企业客户
特点:
- 支持将现有 API 快速转化为 MCP Server
- 适合拥有大量接口的公司接入 AI 能力
- 提供标准化部署方案
📎 适合人群:大型企业、系统集成商
4. 🧩 Zapier MCP(集成型服务)
特点:
- 把数千个工具(Gmail、Slack、Notion 等)集成到 MCP
- 可以用自然语言操作跨系统任务
📎 适合人群:希望打造“AI自动化助手”的中小企业或产品经理
三、MCP 的意义:让 AI 真正“能做事”
在没有 MCP 之前,大模型更多是一个“内容生成器”,你问它什么,它只能“编”或“猜”。
但有了 MCP,它变成了一个**“认知+执行一体化”智能体**(Agent):
- 能读数据:比如数据库、文档、外部 API
- 能调工具:比如任务系统、代码平台、发邮件系统
- 能协同其他 Agent:多个智能体组合完成复杂任务(类似团队分工)
✅ 写在最后:为什么你要关注 MCP?
不论你是开发者、产品经理还是运营,只要你和“大模型落地”打交道,你都绕不开 MCP。
它将是连接模型、数据、工具和用户之间的新基建,就像当年 Web 的 API、当下的 SDK 一样,成为 AI 世界的“电网”。