数据中台走向没落?数据编织能否取而代之?丨ToB产业观察|数据源|应用层|数据传输成本_网易订阅
数据编织,大数据的新风口?
数据编织是新兴的数据管理架构,强调灵活、可扩展性及数据治理,解决数据孤岛等问题,提升决策质量和业务效率,在金融服务、制造业、医疗保健等领域有广泛应用,正成为企业应对数据挑战的新选择。摘要由作者通过智能技术生成
在大数据时代,数据的整合与分析能力成为企业竞争力的核心。随着技术的不断进步,数据编织(Data Fabric)作为一种新兴的数据管理架构,正逐渐成为大数据领域的新风口。本文将探讨数据编织的概念、优势以及它如何成为大数据管理的新趋势。
什么是数据编织?
数据编织,这是一种先进的数据架构方法论。
它通过整合和自动化数据管理流程,实现数据的无缝流动和高效利用。数据编织强调的是灵活性、可扩展性和数据治理,旨在解决传统数据管理中常见的孤岛效应、数据冗余和数据质量低下等问题。通过数据编织,组织能够更好地整合来自不同来源的数据,确保数据的一致性和准确性。
此外,它还支持动态的数据访问和共享,使得数据能够被更广泛地应用于各种业务场景中,从而提升决策质量和业务效率。数据编织技术的实施,通常需要借助先进的数据集成工具和平台,这些工具和平台能够支持复杂的数据转换、清洗和同步任务,同时提供强大的数据监控和分析功能,确保数据编织策略的顺利执行和数据治理目标的达成。
数据编织的核心优势
灵活性与可扩展性
在当今这个快速变化的商业和技术环境中,灵活性与可扩展性成为了企业成功的关键因素。
数据编织架构支持跨多个平台和环境的数据集成,无论是本地服务器、云服务还是混合云环境。这种灵活性使得企业能够快速适应不断变化的业务需求和技术环境。通过这种架构,企业可以轻松地将新的数据源集成到现有的系统中,同时保持数据的完整性和一致性。
此外,数据编织架构的可扩展性确保了随着业务的增长和技术的进步,企业能够无缝地扩展其数据处理能力,而无需进行大规模的系统重构。这种架构的灵活性和可扩展性为企业提供了强大的竞争优势,使它们能够更加敏捷地响应市场变化,从而在竞争激烈的市场中脱颖而出。
高效的数据治理
在当今信息爆炸的时代,数据治理已经成为企业管理和运营中不可或缺的一部分。一个高效的数据治理策略能够帮助企业更好地利用其数据资产,从而在竞争激烈的市场中脱颖而出。
数据编织技术通过集中式元数据管理,为企业提供了一个全面监控和管理数据资产的强大工具。它不仅仅是一个简单的数据管理解决方案,而是一套全面的数据治理框架,能够帮助企业确保数据的质量、安全性和合规性。通过这种集中式管理,企业可以有效地追踪数据的来源、流向以及使用情况,从而实现对数据资产的全面控制。
降低复杂性
在当今信息时代,数据管理已成为企业运营不可或缺的一部分。然而,随着数据量的激增和数据类型的多样化,数据管理的复杂性也随之增加,这给企业带来了不小的挑战。
为了应对这一挑战,数据编织技术应运而生。通过抽象化和自动化数据管理流程,数据编织减少了对复杂数据管道的依赖。这不仅降低了数据管理的复杂性,还提高了数据处理的效率。更重要的是,它使得非技术用户也能轻松访问和利用数据,从而在企业内部推动了数据民主化。
加速数据洞察
通过采用先进的数据编织技术,企业可以显著提升数据处理和分析的效率。
数据编织技术通过优化数据的整合和管理流程,使得数据在组织内部的流动变得更加顺畅无阻。这种流畅的数据流动不仅加快了数据洞察的生成速度,还确保了数据的质量和准确性。企业因此能够更快地从数据中提取价值,支持决策制定和业务创新。通过实时的数据洞察,企业能够迅速响应市场变化,把握商业机会,从而在竞争激烈的市场中保持领先地位。
数据编织的实践案例
金融服务行业
在当今这个信息爆炸的时代,金融服务行业正经历着前所未有的变革。随着技术的不断进步,金融机构需要处理的数据量日益庞大,而这些数据往往来源于不同的渠道和系统。
为了有效地利用这些数据,数据编织技术应运而生。它帮助金融机构整合来自不同渠道和系统的客户数据,包括交易记录、账户信息、信用评分等。通过数据编织,金融机构能够构建一个全面的客户视图,从而更好地理解客户需求和行为模式。
有了统一的客户视图,金融机构能够提供更加个性化的服务,满足客户的特定需求。例如,银行可以根据客户的消费习惯和信用记录,推荐最适合的信用卡产品。此外,统一的客户视图还有助于金融机构更有效地管理风险,特别是降低欺诈风险。通过分析客户的交易行为,金融机构可以及时发现异常活动,采取措施防止欺诈行为的发生。
制造业
在当今这个信息时代,制造业企业正面临着前所未有的挑战与机遇。为了保持竞争力,这些企业必须不断寻求创新的方法来提高效率和降低成本。
利用数据编织整合生产、供应链和客户数据,制造业企业能够实现对整个生产流程的实时监控。这种实时监控能力使得企业能够迅速识别并解决生产过程中的问题,从而避免了潜在的延误和损失。同时,通过优化库存管理,企业能够减少不必要的库存积压,降低仓储成本,确保生产所需材料的及时供应。此外,对客户数据的深入分析帮助企业更好地理解客户需求,从而提供更加个性化和高质量的服务,进而显著提高客户满意度。
医疗保健
随着科技的不断进步,医疗保健行业正在经历一场革命性的变革。这场变革的核心在于数据的整合与应用,它正在深刻地改变着医疗服务的提供方式。
在医疗保健领域,数据编织整合了患者健康记录、医疗设备数据和研究数据。通过先进的信息技术,这些数据被编织在一起,形成了一个庞大而复杂的网络。这不仅包括了患者的个人健康信息,如病史、药物反应和治疗效果,还包括了来自各种医疗设备的实时数据,如心率监测器、血糖仪等。此外,研究数据的整合为临床试验和医学研究提供了宝贵的信息资源。这为医生和研究人员提供了全面的患者视图,从而提高了诊断和治疗的准确性。通过分析这些数据,医生可以更好地理解疾病的复杂性,预测病情的发展趋势,并制定个性化的治疗方案。同时,数据的整合也促进了医疗知识的共享,加速了医学研究的进程,为开发新的治疗方法和药物提供了可能。总之,数据编织在医疗保健领域扮演着至关重要的角色,它不仅提升了医疗服务的质量,也为医疗行业的发展注入了新的活力。
结论
数据编织作为一种创新的大数据管理方法,正逐渐成为企业应对数据挑战的新选择。通过提供灵活性、可扩展性和高效的数据治理,数据编织有助于企业更好地利用数据资产,加速数据洞察的生成,从而在竞争激烈的市场中脱颖而出。随着技术的不断发展,数据编织有望成为大数据领域的新风口,引领企业迈向数据驱动的未来。
据中台是物理集中式架构,侧重于物理化的统一归集和数据搬运,而随着数据规模指数级增长,由于合规性、安全性等原因,数据中台难以应对“跨源异构”数据的整合,且建设数据中台,投资巨大,回报周期长,ROI成为众多企不得不考虑的问题。
从业务视角分析,这种架构高度依赖于ETL专业团队及相关工具,不仅在时效性和灵活性上,难以为前端业务决策和产品创新提供支持,对一些自服务的数据消费场景,也难以提供敏捷的数据交付。
因此,从实际应用角度出发,对于正实施数字化转型战略的大型企业,或者想要更快、成本更低落地数字应用的中小型,甚至是初创企业来说,数据中台在当下这样的环境中,显然已经不是更好的选择。更灵活、更敏捷,也更低成本的数据编织架构开始受到关注。
数据编织的关键突破是通过数据虚拟化技术,创建逻辑数据层,在单点逻辑集成了分散在不同系统中的数据,为数据消费者提供了一个统一的、抽象的、封装的逻辑数据视图,无需物理搬运数据即可实现数据的统一访问与管理。
“用户通过这个逻辑视图,可以查询和操作存储在异构数据源中的数据,把多个异构数据源当成一个同构数据源使用,无需关心数据的位置、类型和格式,最终实现类似数据中台的统一集中化的数据访问和管理。”Aloudata大应科技CMO刘靓告诉钛媒体APP,“数据编织与数据中台最大的差异在于:无需事前物理集中数据,事中运维 ETL 任务,事后计存治理(零搬运、免运维、自治理),为企业数据体系建设和数据管理架构提供了一种全新的思路。”
首创证券成功构建了一个逻辑数仓,将各业务系统的数据无缝连接。在ODS层实现逻辑连接后,DWD层则用于沉淀数仓的历史数据。这种分层策略不仅简化了数仓结构,还实现了数据的按需加速与物化,大大提高了数据处理的灵活性。