MapReduce天龙八部

本文详细介绍了MapReduce的运作流程,包括Map阶段的解析、Shuffle阶段的分区与排序、Reduce阶段的处理以及程序的本地运行和集群运行模式。还提供了具体的代码示例,包括MapReduce程序的主类、Mapper、Reducer、分区和排序类的实现。此外,文中还提到了Combiner规约过程及其在优化数据传输中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

天龙八部:

map阶段:
第一步:读取文件,解析成key,value对,形成k1,v1;
第二步:接受k1,v1,自定义逻辑,转换成新的k2,v2,进行输出

shuffle阶段:
第三步:分区:
相同key的value值发送到同一个reduce中去,key合并,value形成一个集合
第四步:排序 默认按照自字段顺序进行排序
第五步:规约
第六步:分组

reduce阶段
第七步:接受k2,v2 自定义reduce逻辑,转换成新的k3,v3进行输出
第八步:将k3,v3进行输出

注意:
上面八个任务都是单独的一个java类,
八个步骤完了以后,通过job任务组装mr程序,
进行任务的提交

最简单的MapReduce程序:

主类:


package MR;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;


public class MainCount extends Configured implements Tool {
    public static void main(String[] args) throws Exception {
        //这里执行完成后,得到一个int类型的返回值,表示我们的程序退出状态码
        //如果退出的是0,程序执行成功
        //这里设置configuration,相当于我们把父类的configuration设置值了
        int run = ToolRunner.run(new Configuration(), new MainCount(), args);
        System.exit(run);
    }
    /*
    必须实现run方法,这里面就是通过job对象来组装我们程序,组装八个类
     */
    @Override
    public int run(String[] strings) throws Exception {
        //第一步:读取文件,解析成key,value

        //获取一个job,job的作用主要是用来组装MapReduce各个阶段的任务
        //Job的getInstance方法需要两个参数,第一个是一个Configuration的实例,第二个是jobName,可以自己随便定义
        Job job = Job.getInstance(super.getConf(), "xxx");
        //把job和需要操作的文件所在的目录添加进来,注意此时增加的目录
        TextInputFormat.addInputPath(job,new Path("hdfs://hadoop11:8020/wordcount"));

        //打包到集群,必须添加如下配置,不添加的话会报错
        job.setJarByClass(MainCount.class);

        //指定job需要执行的任务的原始数据的类型
        job.setInputFormatClass(TextInputFormat.class);

        //第二步:自定义map类
        //指定map
        job.setMapperClass(WordCountMapper.class);
        //设置k2,v2的类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);


        //第七步:自定义reduce类
        //指定reduce
        job.setReducerClass(WordCountReducer.class);
        //设置k3.v3
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        //第八步:输出文件
        //指定路径
        TextOutputFormat.setOutputPath(job,new Path("hdfs://hadoop11:8020/wordcountoutput"));

        //设置job输出数据的类型
        job.setOutputFormatClass(TextOutputFormat.class);

        //提交任务到集群
        boolean b = job.waitForCompletion(true);
        //使用三元表达确认返回值
        return b?0:1;
    }
}

定义一个map类:

package MR;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;
//定义四个泛型
/*
k1--行偏移量
v1--行内容
k2--单词内容
v2--单词的次数
 */
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
    /**
     *必须重写map方法,实现逻辑
     * @param key       LongWritable key--代表k1
     * @param value     Text value--代表v1
     * @param context   Context context--上下文对象,将数据往下发送
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

      //第一步:将行数据进行切分,用逗号进行分割
      String[] words = value.toString().split(",");
      //遍历切分的文字,通过write方法向下发送
      for(String word:words){
          context.write(new Text(word),new IntWritable(1));
      }
    }
}

定义一个reduce类

package MR;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
//reduce的泛型参数代表k2,v2,k3,v3
public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
    /**
     *和map类同理,必须重写reduce方法
     * @param key   Text key--k2
     * @param values  Iterable<IntWritable> values--是一个集合,v2的类型
     * @param context   承上启下,向下发送
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
       //sum用来统计values的个数
        int sum=0;
        for (IntWritable value:values){

       // ntWritable是一个对象,而如果想要用int参加计算,那么我们需要调用IntWritable对象的一个成员get(),这个函数返回int.
        sum+=value.get();
    }
        context.write(key,new IntWritable(sum));
    }
}

MapReduce程序运行模式

本地运行模式

(1)mapreduce程序是被提交给LocalJobRunner在本地以单进程的形式运行
(2)而处理的数据及输出结果可以在本地文件系统,也可以在hdfs上
(3)怎样实现本地运行?写一个程序,不要带集群的配置文件
本质是程序的conf中是否有mapreduce.framework.name=local以及yarn.resourcemanager.hostname=local参数
(4)本地模式非常便于进行业务逻辑的debug,只要在eclipse中打断点即可

本地模式运行代码设置
configuration.set(“mapreduce.framework.name”,“local”);
configuration.set(“yarn.resourcemanager.hostname”,“local”);
TextInputFormat.addInputPath(job,new Path(“file:///F:\传智播客大数据离线阶段课程资料\3、大数据离线第三天\wordcount\input”));
TextOutputFormat.setOutputPath(job,new Path(“file:///F:\传智播客大数据离线阶段课程资料\3、大数据离线第三天\wordcount\output”));

集群运行

程序运行,将项目打包,发送至hadop集群上执行

hadoop jar original-day03_hdfs-1.0-SNAPSHOT.jar.0 MR.MainCount

MapReduce分区和排序

分区的思路:

第一步:读取文件,形成k1–Longwritab,v1–text
第二步:自定义map接收k1,v1 转换成k2–text,v2–LongWritable
第三步:自定义一个分区类:
使用getPartition()方法
对k2进行分割,得到一个数组,使用数组下标得到一个result值
使用result值作为分区依据
>result 返回 分区号
<result 返回分区号

第四步:自定义reduce类接受k2,v2 直接写出去即可,转换成k3–text,v3–Nullwritab直接输出

简单的案例:

主类:

package mr.demo1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class PartitionMain extends Configured implements Tool {
    @Override
    public int run(String[] args) throws Exception {

        Job job = Job.getInstance(super.getConf(), "mypartiton");
        job.setJarByClass(PartitionMain.class);

        TextInputFormat.addInputPath(job,new Path(args[0]));

        job.setInputFormatClass(TextInputFormat.class);

        job.setMapperClass(PartitionMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(NullWritable.class);

        //第三步
        job.setPartitionerClass(PartitonOwn.class);
       job.setReducerClass(PartitionReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        //设置redeuce的数量,不设置不行
        //reduce的个数和分区数相同
        job.setNumReduceTasks(2);

        job.setOutputFormatClass(TextOutputFormat.class);
        TextOutputFormat.setOutputPath(job,new Path(args[1]));

        boolean b = job.waitForCompletion(true);


        return b?0:1;
    }
    public static void main(String[] args) throws Exception {
        int run = ToolRunner.run(new Configuration(), new PartitionMain(), args);
        System.exit(run);
    }

}

mapper类

package mr.demo1;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class PartitionMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        context.write(value,NullWritable.get());
    }
}

reduce类:

package mr.demo1;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class PartitionReduce extends Reducer<Text, NullWritable,Text,NullWritable> {
    @Override
    protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        context.write(key,NullWritable.get());
    }
}

分区类:

package mr.demo1;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class PartitonOwn extends Partitioner<Text, NullWritable> {

    @Override
    public int getPartition(Text text, NullWritable nullWritable, int numReduceNum) {
        String line = text.toString();

        String[] split = line.split("\t");

        if(Integer.parseInt(split[5])>15){
            return 0;
        }else {
            return 1;
        }
    }
    }

排序的思路:

第一步:读取文件,解析成k1–LongWritable,v1–text
第二步:自定义javaBean,实现WritableComparable,接受k1,v1
转换成k2–JavaBean,v2–Nullwritable
第三步:接受k2,v2不做处理,直接输出

主类:

package mrSort.demo1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
    public class SortMain extends Configured implements Tool {

    @Override
    public int run(String[] strings) throws Exception {
        Job job = Job.getInstance(super.getConf(), "sort");
        //解析文件
        job.setInputFormatClass(TextInputFormat.class);
        TextInputFormat.addInputPath(job,new Path("file:///E:\\baishi\\测试目录\\input\\sort.txt"));

        //自定义map逻辑
        job.setMapperClass(SortMapper.class);
        job.setMapOutputKeyClass(k2Bean.class);
        job.setMapOutputValueClass(NullWritable.class);

        //自定义reduce
        job.setReducerClass(SortReduce.class);
        job.setOutputKeyClass(k2Bean.class);
        job.setOutputValueClass(NullWritable.class);
        job.setOutputValueClass(TextOutputFormat.class);
        TextOutputFormat.setOutputPath(job,new Path("file:///E:\\baishi\\测试目录\\output04"));

        boolean b = job.waitForCompletion(true);

        return b?0:1;
    }
    public static void main(String[] args) throws Exception {

        Configuration configuration=new Configuration();

        System.exit(ToolRunner.run(configuration,new SortMain(),args));
    }

}
				

k2bean排序类:

package mrSort.demo1;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

public class k2Bean implements WritableComparable<k2Bean>{
    /*
    封装两个字段
     */
    private  String first;
    private Integer second;
    /*
    用于数据的比较排序
     */
    @Override
    public int compareTo(k2Bean o) {
        /*
        int a=compareto(b);
        如果a>b  返回1;
        如果a=b,返回0;
        如果a<b,返回-1;

        所以比较两个字段比较的话,只能用大于0,等于0,小于0表示
         */
        //当前的值和传进来的o进行比较
        //如果第一个字段相同,就比较第二个字段
        //如果第二个字段相同,就直接返回结果

        int i = this.first.compareTo(o.first);
        if(i ==0){
            //比较第二个字段
            int i1 = second.compareTo(o.second);
            return i1;
        }else {
            return i;
        }
    }


    /*
    序列化
     */
    @Override
    public void write(DataOutput dataOutput) throws IOException {
    dataOutput.writeUTF(first);
    dataOutput.writeInt(second);
    }
    /*
    反序列化
     */
    @Override
    public void readFields(DataInput dataInput) throws IOException {
        this.first=dataInput.readUTF();
        this.second=dataInput.readInt();

    }

    public String getFirst() {
        return first;
    }

    public void setFirst(String first) {
        this.first = first;
    }

    public Integer getSecond() {
        return second;
    }

    public void setSecond(Integer second) {
        this.second = second;
    }

    @Override
    public String toString() {
        return first +"\t"+second;
    }
}

mapper类

package mrSort.demo1;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

public class SortMapper extends Mapper<LongWritable, Text,k2Bean, NullWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        //自定义计数器,计数map阶段输入多少条数据
        Counter counter = context.getCounter("mr_intput_count", "map_total_result");
        counter.increment(1L);

        String[] split = value.toString().split("\t");
        k2Bean k2Bean = new k2Bean();

        k2Bean.setFirst(split[0]);
        k2Bean.setSecond(Integer.parseInt(split[1]));
        context.write(k2Bean,NullWritable.get());

    }
}

reduce类

package mrSort.demo1;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class SortReduce extends Reducer<k2Bean, NullWritable,k2Bean,NullWritable> {
    
    //定义一个类
    public static  enum Counter{
        REDUCE_INPUT_RECORD,
        REDUCE_OUTPUT_RECORD,
    }
    
    @Override
    protected void reduce(k2Bean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {

        //定义计数器,计数reduce输出条数
        org.apache.hadoop.mapreduce.Counter counter = context.getCounter(Counter.REDUCE_INPUT_RECORD);
        counter.increment(1L);
        
        for (NullWritable value:values) {

            org.apache.hadoop.mapreduce.Counter counter1 = context.getCounter(Counter.REDUCE_OUTPUT_RECORD);
            counter1.increment(1L);
            //将排序后的数据进行输出
            context.write(key, NullWritable.get());
        }
    }
}

规约的过程

发生在reduce阶段,接收k2,v2
combiner不改变数据结果,只用于调优,减少发送到reduce的数据量

思路:
第一步:读取文件,解析k1–LongWritable,v1-text
第二步:自定义javabean,转换成k2–javabean,v2–Nullwritab,输出
第三步:自定义一个Combiner规约类,接受k2,v2 ,直接输出
注释:因为combine类和reduce类一直,所以一般直接调用reduce类
job.setCombinerClass(SortReduce.class);
第四步:自定义reduce类直接输出

案例:MapReduce案例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值