天龙八部:
map阶段:
第一步:读取文件,解析成key,value对,形成k1,v1;
第二步:接受k1,v1,自定义逻辑,转换成新的k2,v2,进行输出
shuffle阶段:
第三步:分区:
相同key的value值发送到同一个reduce中去,key合并,value形成一个集合
第四步:排序 默认按照自字段顺序进行排序
第五步:规约
第六步:分组
reduce阶段
第七步:接受k2,v2 自定义reduce逻辑,转换成新的k3,v3进行输出
第八步:将k3,v3进行输出
注意:
上面八个任务都是单独的一个java类,
八个步骤完了以后,通过job任务组装mr程序,
进行任务的提交
最简单的MapReduce程序:
主类:
package MR;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class MainCount extends Configured implements Tool {
public static void main(String[] args) throws Exception {
//这里执行完成后,得到一个int类型的返回值,表示我们的程序退出状态码
//如果退出的是0,程序执行成功
//这里设置configuration,相当于我们把父类的configuration设置值了
int run = ToolRunner.run(new Configuration(), new MainCount(), args);
System.exit(run);
}
/*
必须实现run方法,这里面就是通过job对象来组装我们程序,组装八个类
*/
@Override
public int run(String[] strings) throws Exception {
//第一步:读取文件,解析成key,value
//获取一个job,job的作用主要是用来组装MapReduce各个阶段的任务
//Job的getInstance方法需要两个参数,第一个是一个Configuration的实例,第二个是jobName,可以自己随便定义
Job job = Job.getInstance(super.getConf(), "xxx");
//把job和需要操作的文件所在的目录添加进来,注意此时增加的目录
TextInputFormat.addInputPath(job,new Path("hdfs://hadoop11:8020/wordcount"));
//打包到集群,必须添加如下配置,不添加的话会报错
job.setJarByClass(MainCount.class);
//指定job需要执行的任务的原始数据的类型
job.setInputFormatClass(TextInputFormat.class);
//第二步:自定义map类
//指定map
job.setMapperClass(WordCountMapper.class);
//设置k2,v2的类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//第七步:自定义reduce类
//指定reduce
job.setReducerClass(WordCountReducer.class);
//设置k3.v3
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//第八步:输出文件
//指定路径
TextOutputFormat.setOutputPath(job,new Path("hdfs://hadoop11:8020/wordcountoutput"));
//设置job输出数据的类型
job.setOutputFormatClass(TextOutputFormat.class);
//提交任务到集群
boolean b = job.waitForCompletion(true);
//使用三元表达确认返回值
return b?0:1;
}
}
定义一个map类:
package MR;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
//定义四个泛型
/*
k1--行偏移量
v1--行内容
k2--单词内容
v2--单词的次数
*/
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
/**
*必须重写map方法,实现逻辑
* @param key LongWritable key--代表k1
* @param value Text value--代表v1
* @param context Context context--上下文对象,将数据往下发送
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//第一步:将行数据进行切分,用逗号进行分割
String[] words = value.toString().split(",");
//遍历切分的文字,通过write方法向下发送
for(String word:words){
context.write(new Text(word),new IntWritable(1));
}
}
}
定义一个reduce类
package MR;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
//reduce的泛型参数代表k2,v2,k3,v3
public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
/**
*和map类同理,必须重写reduce方法
* @param key Text key--k2
* @param values Iterable<IntWritable> values--是一个集合,v2的类型
* @param context 承上启下,向下发送
* @throws IOException
* @throws InterruptedException
*/
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//sum用来统计values的个数
int sum=0;
for (IntWritable value:values){
// ntWritable是一个对象,而如果想要用int参加计算,那么我们需要调用IntWritable对象的一个成员get(),这个函数返回int.
sum+=value.get();
}
context.write(key,new IntWritable(sum));
}
}
MapReduce程序运行模式
本地运行模式
(1)mapreduce程序是被提交给LocalJobRunner在本地以单进程的形式运行
(2)而处理的数据及输出结果可以在本地文件系统,也可以在hdfs上
(3)怎样实现本地运行?写一个程序,不要带集群的配置文件
本质是程序的conf中是否有mapreduce.framework.name=local以及yarn.resourcemanager.hostname=local参数
(4)本地模式非常便于进行业务逻辑的debug,只要在eclipse中打断点即可
本地模式运行代码设置
configuration.set(“mapreduce.framework.name”,“local”);
configuration.set(“yarn.resourcemanager.hostname”,“local”);
TextInputFormat.addInputPath(job,new Path(“file:///F:\传智播客大数据离线阶段课程资料\3、大数据离线第三天\wordcount\input”));
TextOutputFormat.setOutputPath(job,new Path(“file:///F:\传智播客大数据离线阶段课程资料\3、大数据离线第三天\wordcount\output”));
集群运行
程序运行,将项目打包,发送至hadop集群上执行
hadoop jar original-day03_hdfs-1.0-SNAPSHOT.jar.0 MR.MainCount
MapReduce分区和排序
分区的思路:
第一步:读取文件,形成k1–Longwritab,v1–text
第二步:自定义map接收k1,v1 转换成k2–text,v2–LongWritable
第三步:自定义一个分区类:
使用getPartition()方法
对k2进行分割,得到一个数组,使用数组下标得到一个result值
使用result值作为分区依据
>result 返回 分区号
<result 返回分区号
第四步:自定义reduce类接受k2,v2 直接写出去即可,转换成k3–text,v3–Nullwritab直接输出
简单的案例:
主类:
package mr.demo1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class PartitionMain extends Configured implements Tool {
@Override
public int run(String[] args) throws Exception {
Job job = Job.getInstance(super.getConf(), "mypartiton");
job.setJarByClass(PartitionMain.class);
TextInputFormat.addInputPath(job,new Path(args[0]));
job.setInputFormatClass(TextInputFormat.class);
job.setMapperClass(PartitionMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
//第三步
job.setPartitionerClass(PartitonOwn.class);
job.setReducerClass(PartitionReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
//设置redeuce的数量,不设置不行
//reduce的个数和分区数相同
job.setNumReduceTasks(2);
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job,new Path(args[1]));
boolean b = job.waitForCompletion(true);
return b?0:1;
}
public static void main(String[] args) throws Exception {
int run = ToolRunner.run(new Configuration(), new PartitionMain(), args);
System.exit(run);
}
}
mapper类
package mr.demo1;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class PartitionMapper extends Mapper<LongWritable, Text,Text, NullWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
context.write(value,NullWritable.get());
}
}
reduce类:
package mr.demo1;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class PartitionReduce extends Reducer<Text, NullWritable,Text,NullWritable> {
@Override
protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
context.write(key,NullWritable.get());
}
}
分区类:
package mr.demo1;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
public class PartitonOwn extends Partitioner<Text, NullWritable> {
@Override
public int getPartition(Text text, NullWritable nullWritable, int numReduceNum) {
String line = text.toString();
String[] split = line.split("\t");
if(Integer.parseInt(split[5])>15){
return 0;
}else {
return 1;
}
}
}
排序的思路:
第一步:读取文件,解析成k1–LongWritable,v1–text
第二步:自定义javaBean,实现WritableComparable,接受k1,v1
转换成k2–JavaBean,v2–Nullwritable
第三步:接受k2,v2不做处理,直接输出
主类:
package mrSort.demo1;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class SortMain extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
Job job = Job.getInstance(super.getConf(), "sort");
//解析文件
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job,new Path("file:///E:\\baishi\\测试目录\\input\\sort.txt"));
//自定义map逻辑
job.setMapperClass(SortMapper.class);
job.setMapOutputKeyClass(k2Bean.class);
job.setMapOutputValueClass(NullWritable.class);
//自定义reduce
job.setReducerClass(SortReduce.class);
job.setOutputKeyClass(k2Bean.class);
job.setOutputValueClass(NullWritable.class);
job.setOutputValueClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job,new Path("file:///E:\\baishi\\测试目录\\output04"));
boolean b = job.waitForCompletion(true);
return b?0:1;
}
public static void main(String[] args) throws Exception {
Configuration configuration=new Configuration();
System.exit(ToolRunner.run(configuration,new SortMain(),args));
}
}
k2bean排序类:
package mrSort.demo1;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class k2Bean implements WritableComparable<k2Bean>{
/*
封装两个字段
*/
private String first;
private Integer second;
/*
用于数据的比较排序
*/
@Override
public int compareTo(k2Bean o) {
/*
int a=compareto(b);
如果a>b 返回1;
如果a=b,返回0;
如果a<b,返回-1;
所以比较两个字段比较的话,只能用大于0,等于0,小于0表示
*/
//当前的值和传进来的o进行比较
//如果第一个字段相同,就比较第二个字段
//如果第二个字段相同,就直接返回结果
int i = this.first.compareTo(o.first);
if(i ==0){
//比较第二个字段
int i1 = second.compareTo(o.second);
return i1;
}else {
return i;
}
}
/*
序列化
*/
@Override
public void write(DataOutput dataOutput) throws IOException {
dataOutput.writeUTF(first);
dataOutput.writeInt(second);
}
/*
反序列化
*/
@Override
public void readFields(DataInput dataInput) throws IOException {
this.first=dataInput.readUTF();
this.second=dataInput.readInt();
}
public String getFirst() {
return first;
}
public void setFirst(String first) {
this.first = first;
}
public Integer getSecond() {
return second;
}
public void setSecond(Integer second) {
this.second = second;
}
@Override
public String toString() {
return first +"\t"+second;
}
}
mapper类
package mrSort.demo1;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class SortMapper extends Mapper<LongWritable, Text,k2Bean, NullWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//自定义计数器,计数map阶段输入多少条数据
Counter counter = context.getCounter("mr_intput_count", "map_total_result");
counter.increment(1L);
String[] split = value.toString().split("\t");
k2Bean k2Bean = new k2Bean();
k2Bean.setFirst(split[0]);
k2Bean.setSecond(Integer.parseInt(split[1]));
context.write(k2Bean,NullWritable.get());
}
}
reduce类
package mrSort.demo1;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class SortReduce extends Reducer<k2Bean, NullWritable,k2Bean,NullWritable> {
//定义一个类
public static enum Counter{
REDUCE_INPUT_RECORD,
REDUCE_OUTPUT_RECORD,
}
@Override
protected void reduce(k2Bean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
//定义计数器,计数reduce输出条数
org.apache.hadoop.mapreduce.Counter counter = context.getCounter(Counter.REDUCE_INPUT_RECORD);
counter.increment(1L);
for (NullWritable value:values) {
org.apache.hadoop.mapreduce.Counter counter1 = context.getCounter(Counter.REDUCE_OUTPUT_RECORD);
counter1.increment(1L);
//将排序后的数据进行输出
context.write(key, NullWritable.get());
}
}
}
规约的过程
发生在reduce阶段,接收k2,v2
combiner不改变数据结果,只用于调优,减少发送到reduce的数据量
思路:
第一步:读取文件,解析k1–LongWritable,v1-text
第二步:自定义javabean,转换成k2–javabean,v2–Nullwritab,输出
第三步:自定义一个Combiner规约类,接受k2,v2 ,直接输出
注释:因为combine类和reduce类一直,所以一般直接调用reduce类
job.setCombinerClass(SortReduce.class);
第四步:自定义reduce类直接输出