HDU 2680 Choose the best route(Dijkstra,建图的方式很巧妙)

本文介绍了一种解决单向图中寻找从特定起点到终点最短路径的问题。通过两种建图方式实现:一是将起点附近的节点距离设为0;二是采用反向建图求解。并给出了详细的Dijkstra算法实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:点击打开链接

题意:有一个人去他

思路:在HDU2066的基础上变的简单了,那道题是双向图,这道题是单向图,害我wrong了好几发,有2种建图方式(1)把小明的家编号为0,把和他家相邻的车站之间的距离设为0,这样最短距离一定会经过他家相邻的车站(2)反向建图,求从小明朋友家到小明家附近车站的最短距离,这个就和模板差不多了,建图的时候注意反向建图

AC代码1:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <cstring>
#include <climits>
#include <cmath>
#include <cctype>

using namespace std;

const int maxn = 1010;
const int zui = 1000000000;
int map1[maxn][maxn];
int lowdist[maxn];
int visit[maxn];
int n,m,s;

void Dijkstra()
{
    int i,j,k;
    memset(visit,0,sizeof(visit));
    for(i=1; i<=n; i++)
    {
        lowdist[i] = map1[0][i];
    }
    for(i=1; i<=n; i++)
    {
        int min2 = zui;
        k = 0;
        for(j=1; j<=n; j++)
        {
            if(!visit[j] && lowdist[j] < min2)
            {
                min2 = lowdist[j];
                k = j;
            }
        }
        if(k == 0)
            return;
        visit[k] = 1;
        for(j=1; j<=n; j++)
        {
            if(!visit[j] && lowdist[k] + map1[k][j] < lowdist[j])
            {
                lowdist[j] = lowdist[k] + map1[k][j];
            }
        }
    }
}

int main()
{
    int i,j;
    while(scanf("%d%d%d",&n,&m,&s) != EOF)
    {
        for(i=0; i<=n; i++)
        {
            for(j=0; j<=n; j++)
            {
                map1[i][j] = zui;
            }
            map1[i][i] = 0;
        }
        int p,q,t;
        for(i=0; i<m; i++)
        {
            scanf("%d%d%d",&p,&q,&t);
            if(t < map1[p][q])
            {
                map1[p][q] = t;
            }
        }
        int w,x;
        scanf("%d",&w);
        for(i=0; i<w; i++)
        {
            scanf("%d",&x);
            map1[0][x] = 0;
        }
        Dijkstra();
        if(lowdist[s] != map1[0][s])
        {
            printf("%d\n",lowdist[s]);
        }
        else
        {
            printf("-1\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值