线性回归[1]

线性回归算法梳理


在这里插入图片描述

1机器学习概念

  • 有监督学习

    训练数据有标记信息,形式:给定一个输入 x x x,学习预测一个输出 t t t—根据输出形式可分为:回归、分类

  • 无监督学习

    训练数据没有标记信息

  • 泛化能力

    该方法学习到的模型对未知数据的预测能力

  • 过拟合

    一味追求对训练数据的预测能力,所选模型的复杂度往往会比真实模型更高的现象

    解决方法:正则化

  • 欠拟合

    与‘过拟合’相对,对训练样本的一般性尚未学好

    解决方法: 1增加新特征 2 增加模型的复杂度

  • 方差和偏差

    泛化误差 = 偏差 + 方差 + 噪声

    偏差:学习算法的期望预计与真实结果的偏离程度

    方差:同等大小的训练集的变动所导致的学习性能的变化

  • 交叉验证

    1.简单交叉验证

    2.S折交叉验证

    3.留一交叉验证(Leave-one-out Cross Validation)

2 线性回归的原理

线性回归:试图学得一个线性模型以尽可能准确地预测实值输出标记
f ( x i ) = w x i + b , 使 得 f ( x i ) ≃ y i f(x_i) = wx_i+b,使得f(x_i) \simeq y_i f(xi)=wxi+使f(xi)yi

3 线性回归

  • 损失函数: 单个样本的误差
    ∣ f ( x i ) − y i ∣ |f(x_i)-y_i| f(xi)yi

  • 代价函数: 整个训练集上所有样本误差的平均
    1 m ∑ i = 1 m ( f ( x i ) − y i ) 2 \frac{1}{m}\sum_{i=1}^{m}(f(x_i)-y_i)^2 m1i=1m(f(xi)yi)2

  • 目标函数 :代价函数 + 正则化项
    1 m ∑ i = 1 m   ( f ( x i ) − y i ) 2 + 正 则 化 \frac{1}{m}\sum_{i=1}^m \ (f(x_i)-y_i)^2+正则化 m1i=1m (f(xi)yi)2+

4 优化方法

  • 梯度下降法

    考虑无约束问题
    min ⁡ f ( x ) ,   x ∈ R n \min f(x),\ x\in\mathbf{R^n} minf(x), xRn
    f ( x ) f(x) f(x)具有一阶连续偏导数, f ( x ) f(x) f(x) x ( k ) x^{(k)} x(k)附近一阶泰勒展开:
    f ( x ) = f ( x k ) + ∇ f ( x ( k ) ) T ( x − x ( k ) ) f(x) =f(x^{k})+\nabla f(x^{(k)})^T(x-x^{(k)}) f(x)=f(xk)+f(x(k))T(xx(k))
    k + 1 ​ k + 1​ k+1次的迭代值 x k + 1 ​ x^{k+1}​ xk+1:
    x ( k + 1 ) ←   x ( k ) + λ k   p k x^{(k+1)}\gets \ x^{(k)}+ \lambda_k \ p_k x(k+1) x(k)+λk pk
    其中 p k = − ∇   f ( x k ) p_k=-\nabla\ f(x{^{k}}) pk= f(xk)为搜索方向

    λ k \lambda_k λk是步长,由一维度搜索确定:
    f ( x ( k ) + λ k p k ) = min ⁡ λ ≥ 0 f ( x ( k ) + λ p k ) f(x^{(k)}+ \lambda_k p_k)=\min\limits_{\lambda\geq0}f(x^{(k)}+\lambda p_k) f(x(k)+λkpk=λ0minf(x(k)+λpk)

  • 牛顿法

    考虑无约束问题
    min ⁡ f ( x ) ,   x ∈ R n \min f(x),\ x\in\mathbf{R^n} minf(x), xRn
    f ( x ) f(x) f(x)具有二阶连续偏导数, f ( x ) f(x) f(x) x ( k ) x^{(k)} x(k)附近二阶泰勒展开:
    f ( x ) ≃ ϕ ( x ) = f ( x k ) + ∇ f ( x ( k ) ) T ( x − x ( k ) ) + 1 2 ( x − x ( k ) ) T ∇ 2 f ( x ( k ) ) ( x − x ( k ) ) f(x)\simeq\phi(x) =f(x^{k})+\nabla f(x^{(k)})^T(x-x^{(k)})+\frac{1}{2}(x-x^{(k)})^T\nabla^2 f(x^{(k)})(x-x^{(k)}) f(x)ϕ(x)=f(xk)+f(x(k))T(xx(k))+21(xx(k))T2f(x(k))(xx(k))
    ∇ 2 f ( x ( k ) ) \nabla^2 f(x^{(k)}) 2f(x(k)) f ( x ) f(x) f(x) f ( x ( k ) ) f(x^{(k)}) f(x(k))处的Hesse矩阵

    为了求 ϕ ( x ) \phi(x) ϕ(x)的极小值点
    ∇ ϕ ( x ) = 0   ( ϕ ( x ) 取 极 值 的 必 要 条 件 ) \nabla\phi(x)=0 \ (\phi(x)取极值的必要条件) ϕ(x)=0 ϕ(x)
    有:
    ∇ f ( x ( k ) ) + ∇ 2 f ( x ( k ) ) ( x − x ( k ) ) = 0 \nabla f(x^{(k)})+\nabla^2 f(x^{(k)})(x-x^{(k)})=0 f(x(k))+2f(x(k))(xx(k))=0
    由牛顿法的迭代公式:
    x ( k + 1 ) = x ( k ) + ∇ 2 f ( x ( k ) ) − 1 ∇ f ( x ( k ) ) x^{(k+1)} = x^{(k)}+\nabla^2 f(x^{(k)})^{-1}\nabla f(x^{(k)}) x(k+1)=x(k)+2f(x(k))1f(x(k))

  • 拟牛顿法

    在牛顿法的迭代中,需要计算Hesse矩阵的逆矩阵,这一个计算比较复杂,考虑用一个矩阵代替Hesse矩阵的逆

5 线性回归的评估指标

RMSE/MSE/MAE

R-Squared

Adjustd R-Squared

F Statistics

RMSM 均方根误差
R M S E = 1 m ∑ i = 1 m ( f ( x i ) − y i ) 2 RMSE = \sqrt {\frac{1}{m}\sum_{i=1}^m(f(x_i)- y_i)^2} RMSE=m1i=1m(f(xi)yi)2
MSE均方误差
M A E = 1 m ∑ i = 1 m ( f ( x i ) − y i ) 2 MAE=\frac{1}{m}\sum_{i=1}^m(f(x_i)- y_i)^2 MAE=m1i=1m(f(xi)yi)2
MAE绝对误差
M A E = 1 m ∑ i = 1 m ∣ f ( x i ) − y i ∣ MAE =\frac{1}{m}\sum_{i=1}^m|f(x_i)- y_i| MAE=m1i=1mf(xi)yi

6 sklearn参数详情

  • sklearn.linear_model.LinearRegression()

参考:(sklearn)逻辑回归linear_model.LogisticRegression用法

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值