R语言:k近邻

head(iris)##该数据集都是连续变量的

#数据标准化处理
normalize = function(x){
  (x-min(x))/(max(x)-min(x))
}
iris_norm = as.data.frame(lapply(as.list(iris[,1:4]),normalize))

#构造训练集合测试集
set.seed(1234)
ind=sample(2,nrow(iris),replace=TRUE,prob=c(0.67,0.33))
iris_train = iris[ind==1,1:4]
iris_test = iris[ind==2,1:4]
train_label = iris[ind==1,5]
test_label = iris[ind==2,5]


#利用class包,构建KNN模型
iris_knn_pred = knn(train=iris_train,test=iris_test,cl=train_label,k=3)#给出的是预测结果

#用交叉连表观察一下结果
table(test_label,iris_knn_pred)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值