Laplacian matrix

Laplacian matrix

From Wikipedia, the free encyclopedia

https://en.wikipedia.org/wiki/Laplacian_matrix


In the mathematical field of graph theory, the Laplacian matrix, sometimes called admittance matrixKirchhoff matrix or discrete Laplacian, is a matrixrepresentation of a graph. The Laplacian matrix can be used to find many useful properties of graph. Together with Kirchhoff's theorem, it can be used to calculate the number of spanning trees for a given graph. The sparsest cut of a graph can be approximated through the second eigenvalue of its Laplacian by Cheeger's inequality .

Definition[edit]

Given a simple graph G with n vertices, its Laplacian matrix {\displaystyle L_{n\times n}}L_{​{n\times n}} is defined as:[1]

{\displaystyle L=D-A,} L = D - A,

where D is the degree matrix and A is the adjacency matrix of the graph. In the case of directed graphs, either the indegree or outdegree might be used, depending on the application.

The elements of {\displaystyle L}L are given by

{\displaystyle L_{i,j}:={\begin{cases}\deg(v_{i})&{\mbox{if}}\ i=j\\-1&{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&{\mbox{otherwise}}\end{cases}}} L_{​{i,j}}:={\begin{cases}\deg(v_{i})&{\mbox{if}}\ i=j\\-1&{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&{\mbox{otherwise}}\end{cases}}

where deg(vi) is degree of the vertex i.

The symmetric normalized Laplacian matrix is defined as:[1]

{\displaystyle L^{\text{sym}}:=D^{-1/2}LD^{-1/2}=I-D^{-1/2}AD^{-1/2}} L^{​{​{\text{sym}}}}:=D^{​{-1/2}}LD^{​{-1/2}}=I-D^{​{-1/2}}AD^{​{-1/2}},

The elements of {\displaystyle L^{\text{sym}}}L^{​{​{\text{sym}}}} are given by

{\displaystyle L_{i,j}^{\text{sym}}:={\begin{cases}1&{\mbox{if}}\ i=j\ {\mbox{and}}\ \deg(v_{i})\neq 0\\-{\frac {1}{\sqrt {\deg(v_{i})\deg(v_{j})}}}&{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&{\mbox{otherwise}}.\end{cases}}} L_{​{i,j}}^{​{​{\text{sym}}}}:={\begin{cases}1&{\mbox{if}}\ i=j\ {\mbox{and}}\ \deg(v_{i})\neq 0\\-{\frac  {1}{​{\sqrt  {\deg(v_{i})\deg(v_{j})}}}}&{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&{\mbox{otherwise}}.\end{cases}}

The random-walk normalized Laplacian matrix is defined as:

{\displaystyle L^{\text{rw}}:=D^{-1}L=I-D^{-1}A} L^{​{​{\text{rw}}}}:=D^{​{-1}}L=I-D^{​{-1}}A

The elements of {\displaystyle L^{\text{rw}}}L^{​{​{\text{rw}}}} are given by

{\displaystyle L_{i,j}^{\text{rw}}:={\begin{cases}1&{\mbox{if}}\ i=j\ {\mbox{and}}\ \deg(v_{i})\neq 0\\-{\frac {1}{\deg(v_{i})}}&{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&{\mbox{otherwise}}.\end{cases}}} L_{​{i,j}}^{​{​{\text{rw}}}}:={\begin{cases}1&{\mbox{if}}\ i=j\ {\mbox{and}}\ \deg(v_{i})\neq 0\\-{\frac  {1}{\deg(v_{i})}}&{\mbox{if}}\ i\neq j\ {\mbox{and}}\ v_{i}{\mbox{ is adjacent to }}v_{j}\\0&{\mbox{otherwise}}.\end{cases}}

Example[edit]

Here is a simple example of a labeled graph and its Laplacian matrix.

Labeled graph Degree matrix Adjacency matrix Laplacian matrix
6n-graf.svg{\displaystyle \left({\begin{array}{rrrrrr}2&0&0&0&0&0\\0&3&0&0&0&0\\0&0&2&0&0&0\\0&0&0&3&0&0\\0&0&0&0&3&0\\0&0&0&0&0&1\\\end{array}}\right)}\left(\begin{array}{rrrrrr} 2 &  0 &  0 &  0 &  0 &  0\\ 0 &  3 &  0 &  0 &  0 &  0\\ 0 &  0 &  2 &  0 &  0 &  0\\ 0 &  0 &  0 &  3 &  0 &  0\\ 0 &  0 &  0 &  0 &  3 &  0\\ 0 &  0 &  0 &  0 &  0 &  1\\\end{array}\right){\displaystyle \left({\begin{array}{rrrrrr}0&1&0&0&1&0\\1&0&1&0&1&0\\0&1&0&1&0&0\\0&0&1&0&1&1\\1&1&0&1&0&0\\0&0&0&1&0&0\\\end{array}}\right)}\left(\begin{array}{rrrrrr} 0 &  1 &  0 &  0 &  1 &  0\\ 1 &  0 &  1 &  0 &  1 &  0\\ 0 &  1 &  0 &  1 &  0 &  0\\ 0 &  0 &  1 &  0 &  1 &  1\\ 1 &  1 &  0 &  1 &  0 &  0\\ 0 &  0 &  0 &  1 &  0 &  0\\\end{array}\right){\displaystyle \left({\begin{array}{rrrrrr}2&-1&0&0&-1&0\\-1&3&-1&0&-1&0\\0&-1&2&-1&0&0\\0&0&-1&3&-1&-1\\-1&-1&0&-1&3&0\\0&0&0&-1&0&1\\\end{array}}\right)}\left(\begin{array}{rrrrrr} 2 & -1 &  0 &  0 & -1 &  0\\-1 &  3 & -1 &  0 & -1 &  0\\ 0 & -1 &  2 & -1 &  0 &  0\\ 0 &  0 & -1 &  3 & -1 & -1\\-1 & -1 &  0 & -1 &  3 &  0\\ 0 &  0 &  0 & -1 &  0 &  1\\\end{array}\right)

Properties[edit]

For an (undirected) graph G and its Laplacian matrix L with eigenvalues {\displaystyle \lambda _{0}\leq \lambda _{1}\leq \cdots \leq \lambda _{n-1}}\lambda_0 \le \lambda_1 \le \cdots \le \lambda_{n-1}:

  • L is symmetric.
  • L is positive-semidefinite (that is {\displaystyle \lambda _{i}\geq 0}\lambda_i \ge 0 for all i). This is verified in the incidence matrix section (below). This can also be seen from the fact that the Laplacian is symmetric and diagonally dominant.
  • L is an M-matrix (its off-diagonal entries are nonpositive, yet the real parts of its eigenvalues are nonnegative).
  • Every row sum and column sum of L is zero. Indeed, in the sum, the degree of the vertex is summed with a "-1" for each neighbor.
  • In consequence, {\displaystyle \lambda _{0}=0}\lambda_0=0, because the vector {\displaystyle \mathbf {v} _{0}=(1,1,\dots ,1)}\mathbf{v}_0=(1,1,\dots,1) satisfies {\displaystyle L\mathbf {v} _{0}=\mathbf {0} .}L \mathbf{v}_0 = \mathbf{0} .
  • The number of times 0 appears as an eigenvalue in the Laplacian is the number of connected components in the graph.
  • The smallest non-zero eigenvalue of L is called the spectral gap.
  • The second smallest eigenvalue of L is the algebraic connectivity (or Fiedler value) of G.
  • The Laplacian is an operator on the n-dimensional vector space of functions f : V → {\displaystyle \mathbb {R} }\mathbb {R} , where V is the vertex set of G, and n = |V|.
  • When G is k-regular, the normalized Laplacian is: {\displaystyle {\mathcal {L}}={\tfrac {1}{k}}L=I-{\tfrac {1}{k}}A}\mathcal{L} = \tfrac{1}{k} L = I - \tfrac{1}{k} A, where A is the adjacency matrix and I is an identity matrix.
  • For a graph with multiple connected componentsL is a block diagonal matrix, where each block is the respective Laplacian matrix for each component, possibly after reordering the vertices (i.e. L is permutation-similar to a block diagonal matrix).
  • Laplacian matrix is singular.
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值