自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(59)
  • 资源 (2)
  • 收藏
  • 关注

原创 c++ linux 配置

https://blog.csdn.net/zimuzi2019/article/details/106861692

2023-10-10 22:13:16 290

原创 vscode python 无法引入上层目录解决

在vscode 中.vscode 配置如下。

2023-08-24 11:03:34 1261

原创 2021-09-17

Json字符串序列化与反序列化JsonObject test = new JsonObject(); test.add("dataSetInfo", new Gson().toJsonTree(dataSetInfoDo)); test.add("statics", new Gson().toJsonTree(result)); String test2 = test.toString(); kafkaTemplate.send("T_Aicloud_Annotation_PublishEvent

2021-11-21 16:20:57 383

原创 libtorch在linux clion环境中加入

cmake filecmake_minimum_required(VERSION 3.12)project(torch_test)list(APPEND CMAKE_PREFIX_PATH “/home/shijue/LJH/libtorch”) #pytorch自动提示find_package(Torch REQUIRED)include_directories("/home/shijue/LJH/libtorch/include")include_directories("/home/shi

2021-01-10 14:43:11 358

原创 2020-12-17

数据不平衡问题1. 欠采样、过采样、生成合成数据重采样数据集(修改比例)是好是坏取决于分类器的目的。如果两个类是不平衡、不可分离的,且我们的目标是获得最大的准确率。那我获得分类器只会将数据点分到一个类中;不过这不是问题,而只是一个事实:针对些变量已经没有其他更好的选择。基于成本的分类结果不好的根本原因在于目标函数没有得到很好的定义。截至此时,我们一直假设分类器具备高准确率,同时假设两类错误(「假阳性」和「假阴性」)具有相同的成本(cost)。在我们的例子中,这意味着真实标签为 C1、预测结果为 C0

2020-12-17 16:24:46 217

原创 mmdetection 训练数据

修改源码部分(voc数据集)以faster rcnn为例1. config/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py修改数目类别下面展示一些 内联代码片。model = dict(roi_head=dict(bbox_head=dict(num_classes=1)))2.core/evaluation/class_names.py修改检测类别名称3. mmdet/datasets/voc.py修改检测类别注意:当目标类别为一类时需要检测类

2020-12-10 17:29:49 249

转载 cmake find

https://www.cnblogs.com/newneul/p/8364924.html

2020-09-08 17:59:42 209

转载 安装opencv

https://www.cnblogs.com/fx-blog/p/8213704.html

2020-09-08 13:04:18 148

原创 cmake 跟新

cmake 下载 wget http://www.cmake.org/files/v3.12/cmake-3.12.0.tar.gz执行./configuresudo makesudo make install

2020-09-07 21:31:33 133

转载 【损失函数】交叉熵损失函数简介

https://zhuanlan.zhihu.com/p/124309304

2020-09-02 13:36:57 204

转载 Ubuntu16.04安装高版本CMake

1.卸载旧版本apt-get autoremove cmake2.以安装3.12.3版本为例$ sudo apt-get install build-essential$ wget http://www.cmake.org/files/v3.12/cmake-3.12.3.tar.gz3.解压、安装$ tar xf cmake-3.12.3.tar.gz$ cd cmake-3.12.3$ ./configure$ make$ sudo make install4.解决路径问题exp

2020-09-02 12:36:40 578

原创 虚函数

一个基类的指针或者引用指向子类的对象基类的指针调用函数时,会查找该对象的虚函数表。虚函数表的地址在对象的首地址。每个对象中保存的是虚函数表的指针,c++内部为每一个类维持一个虚函数表。虚函数表为啥能准确的查找出相应函数指针呢?因为在类的设计中,虚函数表直接从父类继承,如果覆盖了某个虚函数,那么虚函数表的指针就会被替换,因此可以根据指针准确找到调用哪个函数。继承函数只是继承了函数的调用权。动态绑定取决于指针指向哪个对象。指向的对象会在虚函数表中查找的调用的函数地址。...

2020-08-30 22:45:52 129

转载 linux 常用命令组合

https://blog.csdn.net/weixin_34204722/article/details/92894592

2020-07-23 16:04:01 193

转载 类装饰器

https://www.cnblogs.com/yueyun00/p/12118385.html

2020-07-02 10:43:25 171

原创 图解HTTP随笔

TCP/IP分为4层1.应用层FTP(文本传输协议)DNS(域名系统)2.传输层TCP(传输控制协议)UDP(用户数据报)3.网络层处理网络上的数据包4.链路层硬件设备HTTP-IPIP网络协议位于网络层,把各种数据包传送给对方。IP地址是节点被分配的地址,mac地址是网卡所属的固定地址TCP采用三次握手DNS通过域名查找IP地址,或者逆向从IP地址反查域名的服务。get请求访问服务器的类型.GET获取资源POST传输实体主体PUT传输文件HEAD获得报

2020-06-14 18:33:13 140

转载 移动平均

https://www.cnblogs.com/wuliytTaotao/p/9479958.html

2020-06-03 18:06:45 209

转载 tf.nn.sigmoid_cross_entropy_with_logits tf.nn.softmax_cross_entropy_with_logits

https://blog.csdn.net/m0_37393514/article/details/81393819https://www.cnblogs.com/tangjunjun/p/11506093.html

2020-05-24 20:59:17 294

转载 C/C++内存管理详解

https://www.cnblogs.com/qiumingcheng/p/7818803.html

2020-05-16 11:04:10 122

原创 opencv安装问题

1 fatal error: vgg_generated_120.i: No such file or directory将文件下载到指定目录2 Scanning dependencies of target opencv_test_ximgproc/home/zkl/zklcode/code/pycv/opencv_contrib/modules/xfeatures2d/test/test_rotation_and_scale_invariance.cpp:7:82: fatal error: fe

2020-05-14 23:46:59 1133

转载 构造函数和析构函数 是否能为虚函数

https://blog.csdn.net/shilikun841122/article/details/79012779https://blog.csdn.net/King_weng/article/details/89263215

2020-05-10 18:26:55 228

原创 衡量两个向量的距离

nA, inB 对应的是 列向量欧氏距离:指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。二维或三维中的欧氏距离就是两点之间的实际距离。相似度= 1/(1+欧式距离)相似度= 1.0/(1.0 + la.norm(inA - inB))物品对越相似,它们的相似度值就越大。皮尔逊相关系数:度量的是两个向量之间的相似度。相似度= 0.5 + 0....

2020-05-06 23:12:41 3378

转载 classmethod与staticmethod

https://www.cnblogs.com/z-joshua/p/7601578.html

2020-05-02 22:46:52 136

原创 动态内存管理容易错误的点

忘记delete内存。容易造成内存泄漏,程序运行很长时间后,等到内存耗尽后才出现错误。使用已经释放的对象。通过释放内存后将指针置为空,有时可以检测到这种错误同一块内存释放两次。两个指针指向同一块内存空间。。...

2020-05-02 21:04:24 133

原创 选择超参数

有两种选择超参数的方法:手动选择。手动选择超参数需要了解超参数做了些什么,以及机器学习模型如何才能取得良好的泛化自动选择。自动选择超参数算法不需要你了解超参数做了什么以及机器学习模型如何才能取得零号的泛化,但是它往往需要更高的计算成本.手动设置超参数:我们必须了解超参数、训练误差、泛化误差、计算资源(内存和运行时间) 之间的关系。这要求我们切实了解一个学习算法有效容量的基本概念手动搜索超...

2020-05-02 12:24:31 2291

原创 机器学习中的方差

回归决策树遍历每个特征(1次遍历), 遍历每个特征中的特征值(2次遍历)。选出使得分割后的数据集最小的方差,作为分割的值。为什么是最小方差呢?# -*- coding: utf-8 -*-"""Created on Wed Aug 1 15:34:57 2018"""import matplotlib.pyplot as pltimport numpy as np"""函数...

2020-04-29 16:42:01 543

原创 神经网络BN层

批量归一化(Batch Normalization,BN)方法有效规避了这些复杂参数对网络训练产生的影响,在加速训练收敛的同时也提升了网络的泛化能力。神经网络训练的本质是学习数据的分布,如果训练数据和测试数据分布不同的话,学习的泛华能力大大降低。因此需要在训练开始前对数据所有输入数据进行归一化处理。然而随着网络训练的进行, 每个隐藏层参数变化会使得后一层的输入发生变化,从而使得每一批训练数据的...

2020-04-28 23:47:00 593

原创 问题 对于二分类问题,当训练集中正负样本非常不均衡时,如何处理数据以更好 地训练分类模型?

为什么很多分类模型在训练数据不均衡会出现问题?本质原因是模型在训练时优化的目标函数和人们测试时使用的评价标准不一致。这种不一致可能是训练数据的样本分布和测试数据的不一致,例如训练时优化的整个训练集(正负比例1:99)的正确率,而测试的时候期望正负比例1:1一般从两个方面处理数据:基于数据的方法对数据进行重采样,使得原先的数据样本均衡。最简单的处理不均衡样本的方法是随机采样。采样一般分为过采...

2020-04-28 22:39:41 3711

原创 pandas随笔

Series类似于一维数组,他是由一维数据(各种numpy数据类型)以及与之相关的数据标签(即索引)组成索引可以由index参数组成object = Series([4, 7, -5, 3], index = ['d', 'b', 'a', 'c'])Numpy数组运算都会保留索引与值之间的链接np.exp(object)可以通过字典来创建Seriesa = {0:a, 1:b, 2:...

2020-04-26 23:52:30 201 1

原创 滑动窗口-文本序列

无重复最长子串子串的话肯定是连续的序列,设置一个集合,遍历每一个字符,当这个字符在集合中的话,删除的是从左到这个字符的所有元素。如果不重复就加入到集合中。class Solution: def lengthOfLongestSubstring(self, s: str) -> int: if not s: return 0 left = 0 ...

2020-04-25 12:32:57 490

原创 字典树

class Node(object): def __init__(self, value): self._children = {} self._value = value def _add_child(self, char, value, overwirte = False): child = self._children.get(char) if child is Non...

2020-04-25 00:04:19 125

原创 __getitem__

在面向对象的编程中,协议是非正式的接口,只是在文档中定义,在代码中不定义。例如,python的序列协议只需要__len__和__getitem__两个方法。任何类只要使用标准的签名和语义实现了这两个方法,就能在任何期待序列的地方。import collectionsCard = collections.namedtuple('Card', ['rank', 'suit'])class Fre...

2020-04-24 20:37:12 152

原创 描述符协议

class Grade: def __init__(self): self._value = 0 def __get__(self, instance, owner): return self._value def __set__(self, instance, value): if not (0 <= value &...

2020-04-24 19:17:54 138

原创 property属性 动态计算

from datetime import datetimefrom datetime import timedeltaclass Bucket(object): def __init__(self, peroid): self.peroid_delta = timedelta(seconds = peroid) self.reset_time = datetime.now() s...

2020-04-24 14:24:26 376 1

原创 二叉树转化为双向链表

在这里插入代码class Solution: def __init__(self): #指定两个节点 listHead为始终不变的头结点 #listTail为变化的节点 self.listHead = None self.listTail = None def Convert(self, pRootOfTree): if pRootOfTree == None: ...

2020-04-24 00:28:15 140

原创 c++ 中的protected与private的区别

protected可以被基类成员、友元、派生类访问private可以被基类成员、友元访问

2020-04-23 12:24:51 430

原创 虚函数

虚函数的作用:1 解决菱形继承的重复数据问题(多继承)菱形继承如果不用虚函数,导致儿子类有多个父类数据,孙子类集成儿子类中的重复数据解决 虚基类中的虚指针,通过偏移量指向同一份数据。2 多态的使用 有利于程序的扩展父类指针或引用指向子类对象子类重写虚函数3 虚析构子类中有堆区的数据,父类释放不干净。虚析构、纯虚析构通过父类的指针指向子类的对象。...

2020-04-23 12:22:05 116

原创 python 文件读取的方法

1.、 readf = open(‘test/gbk.txt’, ‘r+’, encoding=‘utf-8’)print(f.read())优点:将数据整体读取,放入一个字符串变量中缺点:如果文件过大导致内存泄漏2、readlinewith open(fileName) as f:dataLine = f.readline()while dataLine:print(dataL...

2020-04-22 20:03:54 439

转载 python 线程

https://blog.csdn.net/zshluckydogs/article/details/81986649

2020-04-22 00:09:13 107

转载 1x1卷积的作用

https://www.zhihu.com/search?type=content&q=1x1%E5%8D%B7%E7%A7%AF

2020-04-21 11:14:35 197 1

转载 指数移动加权平均

https://zhuanlan.zhihu.com/p/32335746

2020-04-18 13:05:35 157

压缩感知文献综述

随着信息技术的发展,人们对信息的巨量需求以及硬件的发展缓慢造成了信号采样,传输和存储的巨大压力。如何解决在现有的硬件基础上传输大量的信息成为热点研究的内容。近年来压缩感知的出现为缓解这些压力提供了解决的办法。本文综述了压缩感知的理论框架及关键的技术问题,并着重介绍了压缩感知稀疏重构中的主流贪婪算法,通过算法实验分析了各种算法的重构性能。

2019-04-11

python学习

python开发学习入门。了解基本的语法编写和逻辑结构。用较为朴素的语言解读python的原理,更好的学习编程

2018-04-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除