最小路径覆盖问题
路径覆盖的定义是:在有向图中找一些路径,使之覆盖了图中的所有顶点,就是任意一个顶点都跟那些路径中的某一条相关联,且任何一个顶点有且只有一条路径与之关联,一个单独的顶点是一条路径.最小路径覆盖就是最少的路径覆盖数。
有定理: 最小路径覆盖 = 图的顶点数 – 最大匹配数。 用匈牙利算法算出匹配数。
点覆盖集
一个点集,使该图中所有边至少有个点在这个集合中
点独立集
一个点集,任意该集合中两个点 在原图中都不相邻
支配集
即一个点集,使得所有其他点至少有一个相邻点在集合里。
衍生:最小点覆盖 最小点权覆盖 最大点独立 最大点权独立
对所有图 A 对于不存在孤立点的图,最大匹配+最小边覆盖=V
B 最大独立集+最小顶点覆盖=V
对二分图 c 最大匹配=最小顶点覆盖