前言:仅个人小记。对于Frobenius自同构的讨论,我们会理解任意有限域中的任意元素必然存在唯一的特征次根。即有限域 F,特征为 p,则任意 F 中的元素必然存在唯一的 p 次根。同样也告诉我们,对整个有限域 F 做p次幂,得到的结果仍然是 F。由Frobenius自同构引出的更重要的是不可约多项式的共轭根的形式关系,这里对此不做讨论。
前要知识:
- a j ≡ i m o d n aj\equiv i\ mod\ n aj≡i mod n,当 a ⊥ n a\perp n a⊥n时,给定 i , a , n,则 j 有唯一解。
Frobenius 自同构
引入域 F F F,域 F F F的特征为 c h a r ( F ) = p char(F)=p char(F)=p,p为素数。域的元素个数必然为p的幂次方,记为 p n p^n pn。相应的域中乘法群的阶为 p n − 1 p^n-1 pn−1。
引入一个映射 σ \sigma σ,定义为
σ
:
F
→
F
α
→
α
p
,
α
∈
F
\sigma:F\rightarrow F\\\alpha\rightarrow \alpha^p, \alpha\in F
σ:F→Fα→αp,α∈F称映射
σ
\sigma
σ为Frobenius自同构。
下面证明
σ
\sigma
σ是一个自同构映射。证明一个映射是同构的,即先证明其为同态,然后证明其为双射。
证明同态:
σ ( α + β ) = ( α + β ) p = α p + β p = σ ( α ) + σ ( β ) \sigma(\alpha+\beta)=(\alpha+\beta)^p=\alpha^p+\beta^p=\sigma(\alpha)+\sigma(\beta) σ(α+β)=(α+β)p=αp+βp=σ(α)+σ(β)所以满足加法同态。
σ
(
α
β
)
=
(
α
β
)
p
=
α
p
β
p
=
σ
(
α
)
σ
(
β
)
\sigma(\alpha\beta)=(\alpha\beta)^p=\alpha^p\beta^p=\sigma(\alpha)\sigma(\beta)
σ(αβ)=(αβ)p=αpβp=σ(α)σ(β)所以满足乘法同态。下面再证明该映射是一个双射:
∀
β
∈
F
\forall \beta\in F
∀β∈F,如果
β
=
x
p
\beta=x^p
β=xp有解,且解唯一,则证得
σ
\sigma
σ为双射。
记域F的生成元为 g。则
β = x p \beta=x^p β=xp写作
g i = g j p g^i=g^{jp} gi=gjp进而
i ≡ j p m o d ( p n − 1 ) i\equiv jp\ mod (p^n-1) i≡jp mod(pn−1)因为 p 为素数,所以必然有 p ⊥ ( p n − 1 ) p\perp(p^n-1) p⊥(pn−1)进而 j 必然有唯一解。进而 σ \sigma σ为双射。
综上, σ \sigma σ是一个同构映射,又因为映射两侧为同一个集合F,故而成这个同构映射为自同构。
基于Frobenius自同构讨论映射形成的循环群
引入一个集合
G
=
{
σ
,
σ
2
,
.
.
.
,
σ
n
}
G=\{\sigma,\sigma^2,...,\sigma^n\}
G={σ,σ2,...,σn}。其中元素
σ
\sigma
σ是一个域
F
p
n
上
的
F_{p^n}上的
Fpn上的Frobenius自同构。
显然
σ ( α ) = α p , σ 2 ( α ) = α p 2 , . . . , σ n ( α ) = α q n , α ∈ F p n \sigma(\alpha)=\alpha^p,\sigma^2(\alpha)=\alpha^{p^2},...,\sigma^{n}(\alpha)=\alpha^{q^n},\alpha\in F_{p^n} σ(α)=αp,σ2(α)=αp2,...,σn(α)=αqn,α∈Fpn因为 α ∈ F p n \alpha\in F_{p^n} α∈Fpn所以显然有
α p n = α p n − 1 α = α \alpha^{p^n}=\alpha^{p^n-1}\alpha=\alpha αpn=αpn−1α=α进而 σ n ( α ) = α p n = α \sigma^n(\alpha)=\alpha^{p^n}=\alpha σn(α)=αpn=α即 σ n 是 一 个 恒 同 映 射 \sigma^n是一个恒同映射 σn是一个恒同映射
下面证明G是循环群,
σ
\sigma
σ是群G的生成元,G的群阶为
∣
G
∣
=
n
|G|=n
∣G∣=n。
显然,因为
σ
n
\sigma^n
σn是恒同映射,所以
∀
σ
i
∈
G
,
σ
n
(
σ
i
(
α
)
)
=
σ
i
(
α
)
=
σ
i
(
σ
n
(
α
)
)
\forall \sigma^i\in G,\sigma^n(\sigma^i(\alpha))=\sigma^i(\alpha)=\sigma^i(\sigma^n(\alpha))
∀σi∈G,σn(σi(α))=σi(α)=σi(σn(α))所以
σ
n
\sigma^n
σn是幺元。
证明封闭性,
∀
σ
i
,
σ
j
∈
G
,
σ
i
(
σ
j
(
α
)
)
=
σ
i
+
j
(
α
)
=
σ
k
n
σ
(
i
+
j
)
(
α
)
=
σ
(
i
+
j
)
m
o
d
n
(
α
)
∈
G
\forall \sigma^i,\sigma^j\in G,\sigma^i(\sigma^j(\alpha))=\sigma^{i+j}(\alpha)=\sigma^{kn}\sigma^{(i+j)}(\alpha)=\sigma^{(i+j)mod\ n}(\alpha)\in G
∀σi,σj∈G,σi(σj(α))=σi+j(α)=σknσ(i+j)(α)=σ(i+j)mod n(α)∈G故而满足封闭性。
结合律显然成立。
证明可逆,显然
∀
σ
i
∈
G
,
σ
n
−
i
∈
G
,
σ
i
σ
n
−
i
=
σ
n
=
幺
元
\forall \sigma^i\in G,\sigma^{n-i}\in G,\sigma^i\sigma^{n-i}=\sigma^n=幺元
∀σi∈G,σn−i∈G,σiσn−i=σn=幺元
至此,已经证明出G是一个群。下面证明G是一个由
σ
\sigma
σ生成的循环群。
显然,只需要证明
σ
i
≠
1
,
0
≤
i
<
n
\sigma^i\neq1,0\leq i<n
σi=1,0≤i<n不是幺元即可,采用反正法证明。假设
σ
i
,
0
≤
i
<
n
\sigma^i,0\leq i<n
σi,0≤i<n是幺元。即
σ i ( α ) = α , 0 ≤ i < n \sigma^i(\alpha)=\alpha,0\leq i<n σi(α)=α,0≤i<n则
α p i = α , i < n \alpha^{p^i}=\alpha,i<n αpi=α,i<n进而 α p i − 1 = 1 , i < n \alpha^{p^i-1}=1,i<n αpi−1=1,i<n因为 α \alpha α具有任意性,即
∀ α , α p i − 1 = 1 , i < n \forall \alpha,\alpha^{p^i-1}=1,i<n ∀α,αpi−1=1,i<n故而 F p n F_{p^n} Fpn中的任意元素 α \alpha α的阶 o ( α ) o(\alpha) o(α)满足
o ( α ) ≤ p i − 1 o(\alpha)\leq p^{i-1} o(α)≤pi−1而 F p n F_{p^n} Fpn是域,所以必然有元素的阶为 p n − 1 > p i − 1 p^{n}-1>p^i-1 pn−1>pi−1进而矛盾,故而假设不成立,进而 G 是一个 n 阶循环群。
小结
显然群G很有特殊意义,即群G和域 F p n F_{p^n} Fpn紧密关联在一起。这是一个很精彩的群。