Frobenius自同构

前言:仅个人小记。对于Frobenius自同构的讨论,我们会理解任意有限域中的任意元素必然存在唯一的特征次根。即有限域 F,特征为 p,则任意 F 中的元素必然存在唯一的 p 次根。同样也告诉我们,对整个有限域 F 做p次幂,得到的结果仍然是 F。由Frobenius自同构引出的更重要的是不可约多项式的共轭根的形式关系,这里对此不做讨论。

前要知识:
  1. a j ≡ i   m o d   n aj\equiv i\ mod\ n aji mod n,当 a ⊥ n a\perp n an时,给定 i , a , n,则 j 有唯一解。
Frobenius 自同构

引入域 F F F,域 F F F的特征为 c h a r ( F ) = p char(F)=p char(F)=p,p为素数域的元素个数必然为p的幂次方,记为 p n p^n pn。相应的域中乘法群的阶为 p n − 1 p^n-1 pn1

引入一个映射 σ \sigma σ,定义为

σ : F → F α → α p , α ∈ F \sigma:F\rightarrow F\\\alpha\rightarrow \alpha^p, \alpha\in F σ:FFααp,αF称映射 σ \sigma σFrobenius自同构
下面证明 σ \sigma σ是一个自同构映射。证明一个映射是同构的,即先证明其为同态,然后证明其为双射。
证明同态:

σ ( α + β ) = ( α + β ) p = α p + β p = σ ( α ) + σ ( β ) \sigma(\alpha+\beta)=(\alpha+\beta)^p=\alpha^p+\beta^p=\sigma(\alpha)+\sigma(\beta) σ(α+β)=(α+β)p=αp+βp=σ(α)+σ(β)所以满足加法同态

σ ( α β ) = ( α β ) p = α p β p = σ ( α ) σ ( β ) \sigma(\alpha\beta)=(\alpha\beta)^p=\alpha^p\beta^p=\sigma(\alpha)\sigma(\beta) σ(αβ)=(αβ)p=αpβp=σ(α)σ(β)所以满足乘法同态。下面再证明该映射是一个双射:
∀ β ∈ F \forall \beta\in F βF,如果 β = x p \beta=x^p β=xp有解,且解唯一,则证得 σ \sigma σ为双射。
记域F的生成元为 g。则

β = x p \beta=x^p β=xp写作

g i = g j p g^i=g^{jp} gi=gjp进而

i ≡ j p   m o d ( p n − 1 ) i\equiv jp\ mod (p^n-1) ijp mod(pn1)因为 p 为素数,所以必然有 p ⊥ ( p n − 1 ) p\perp(p^n-1) p(pn1)进而 j 必然有唯一解。进而 σ \sigma σ为双射。

综上, σ \sigma σ是一个同构映射,又因为映射两侧为同一个集合F,故而成这个同构映射为自同构

基于Frobenius自同构讨论映射形成的循环群

引入一个集合 G = { σ , σ 2 , . . . , σ n } G=\{\sigma,\sigma^2,...,\sigma^n\} G={σ,σ2,...,σn}。其中元素 σ \sigma σ是一个域 F p n 上 的 F_{p^n}上的 FpnFrobenius自同构。
显然

σ ( α ) = α p , σ 2 ( α ) = α p 2 , . . . , σ n ( α ) = α q n , α ∈ F p n \sigma(\alpha)=\alpha^p,\sigma^2(\alpha)=\alpha^{p^2},...,\sigma^{n}(\alpha)=\alpha^{q^n},\alpha\in F_{p^n} σ(α)=αp,σ2(α)=αp2,...,σn(α)=αqn,αFpn因为 α ∈ F p n \alpha\in F_{p^n} αFpn所以显然有

α p n = α p n − 1 α = α \alpha^{p^n}=\alpha^{p^n-1}\alpha=\alpha αpn=αpn1α=α进而 σ n ( α ) = α p n = α \sigma^n(\alpha)=\alpha^{p^n}=\alpha σn(α)=αpn=α σ n 是 一 个 恒 同 映 射 \sigma^n是一个恒同映射 σn

下面证明G是循环群 σ \sigma σ是群G的生成元,G的群阶为 ∣ G ∣ = n |G|=n G=n
显然,因为 σ n \sigma^n σn是恒同映射,所以

∀ σ i ∈ G , σ n ( σ i ( α ) ) = σ i ( α ) = σ i ( σ n ( α ) ) \forall \sigma^i\in G,\sigma^n(\sigma^i(\alpha))=\sigma^i(\alpha)=\sigma^i(\sigma^n(\alpha)) σiG,σn(σi(α))=σi(α)=σi(σn(α))所以 σ n \sigma^n σn幺元
证明封闭性, ∀ σ i , σ j ∈ G , σ i ( σ j ( α ) ) = σ i + j ( α ) = σ k n σ ( i + j ) ( α ) = σ ( i + j ) m o d   n ( α ) ∈ G \forall \sigma^i,\sigma^j\in G,\sigma^i(\sigma^j(\alpha))=\sigma^{i+j}(\alpha)=\sigma^{kn}\sigma^{(i+j)}(\alpha)=\sigma^{(i+j)mod\ n}(\alpha)\in G σi,σjG,σi(σj(α))=σi+j(α)=σknσ(i+j)(α)=σ(i+j)mod n(α)G故而满足封闭性。
结合律显然成立。
证明可逆,显然

∀ σ i ∈ G , σ n − i ∈ G , σ i σ n − i = σ n = 幺 元 \forall \sigma^i\in G,\sigma^{n-i}\in G,\sigma^i\sigma^{n-i}=\sigma^n=幺元 σiG,σniG,σiσni=σn=
至此,已经证明出G是一个群。下面证明G是一个由 σ \sigma σ生成的循环群。
显然,只需要证明 σ i ≠ 1 , 0 ≤ i < n \sigma^i\neq1,0\leq i<n σi=1,0i<n不是幺元即可,采用反正法证明。假设 σ i , 0 ≤ i < n \sigma^i,0\leq i<n σi,0i<n是幺元。即

σ i ( α ) = α , 0 ≤ i < n \sigma^i(\alpha)=\alpha,0\leq i<n σi(α)=α,0i<n

α p i = α , i < n \alpha^{p^i}=\alpha,i<n αpi=α,i<n进而 α p i − 1 = 1 , i < n \alpha^{p^i-1}=1,i<n αpi1=1,i<n因为 α \alpha α具有任意性,即

∀ α , α p i − 1 = 1 , i < n \forall \alpha,\alpha^{p^i-1}=1,i<n α,αpi1=1,i<n故而 F p n F_{p^n} Fpn中的任意元素 α \alpha α的阶 o ( α ) o(\alpha) o(α)满足

o ( α ) ≤ p i − 1 o(\alpha)\leq p^{i-1} o(α)pi1 F p n F_{p^n} Fpn是域,所以必然有元素的阶为 p n − 1 > p i − 1 p^{n}-1>p^i-1 pn1>pi1进而矛盾,故而假设不成立,进而 G 是一个 n 阶循环群

小结

显然群G很有特殊意义,即群G和域 F p n F_{p^n} Fpn紧密关联在一起。这是一个很精彩的群。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值