无符号有符号乘法_如何证明五次及以上方程无根式解?|解方程系列5

cfc25600849ebed60480e83e3e0230a6.png

弘毅:如何证明五次及以上方程无根式解?

温欣提市:大多数感到困惑的人,首先主要是因为没有把问题描述清楚。


首先,直观一点解释,简单的高次方程,比如 x的5次方=2,这种,是明显有根式解的,除了实数根2的开五次方, 还有四个复数根都能用加减乘除和开方表示出来。

而稍微复杂一点的方程,比如

这种,就很难说了。

因为你用加减乘除,以及开有限次方等这些操作能凑出的数虽然有无限多个,但是他们始终是含在某一类数范围内,而这一类数的范围是不是就能包含这个方程的根,这就很难说了。

之所以二次,三次,四次方程可根式解,就是因为上面说的用加减乘除,以及开有限次方等这些操作能凑出的数刚好涵盖了二次,三次,四次方程在复数域内的所有根。

问题是随着方程次数的增加以及表达式的复杂性,根的表达式也明显变得复杂:

这个从二次方程的根的表达式,到三次,四次方程的根的表达式就能很明显看出来次数对根的表达式的复杂性的影响,很明显二次的根你能记住,但是到了三次,四次就很难记住了。

另外从

这种简单的方程到
这种表达式更复杂更一般一点的方程,复杂性就增加了很多,因为前者有根式解,后者却没有。

那么如何来将上述说的根的表达式的复杂性通过数学本质来定量化或者定性化呢?

阿贝尔,伽罗华等天才数学家的创新工作就彻底解决了根的表达式是否可通过加减乘除以及开方表示出来,这一有关根的表达式的复杂性的定性研究

其结论是一般性的一元多项式方程能否根式解等价于这个多项式对应的对称群

是否为可解群,而 n=1,2,3,4时这个群是可解群,n大于等于5时这个群不是可解群

以上就是最直观的解释之一。

下面来讲讲精确的解释

0. 有根式解的精确含义

首先我们要把话说清楚,就是要把我们的问题表达清楚。

这里面有两个层次的含义,有些微差别。

我们说一个具体的多项式方程,比如

能不能解的意思是指

它在复数域内的所有根都可通过上述系数域内的开有限次方以及加减乘除这五种运算的有限次运算表示出来。

比如
的解就是
, 那么我们就说这个方程

能解或者更准确一点叫 有根式解

上述就是一个具体的多项式方程有根式解的含义

另一个更广泛地,是指形如

这样的
一般性方程有根式解的含义

它是指方程

在复数域内的所有根能通过以系数参数为未定元的有理函数域(这里就是
)内的元素
开有限次方以及加减乘除这五种运算的有限次运算表示出来。
比如
就是满足要求的根式解。

因此我们说方程

有根式解,或者有
一般根式解

这里之所以加上「一般」两个字作修饰,正是为了区分某个具体的方程

某一类的方程有一般根式解,当然就能推出这一类的任何一个具体的方程都有根式解。

因为你只要代进去就好。

但是反过来,一个具体的方程有根式解当然不能推出某一类方程有一般根式解。

因为本系列的前两篇专栏文章:

温欣提市:如何解三次方程?|解方程系列1​zhuanlan.zhihu.com
4ca98a81e579e51b453651c4fa9d4eeb.png
温欣提市:如何解四次方程?|解方程系列2​zhuanlan.zhihu.com
9dcef5a087f7860a272b03c804c98744.png

我们已经知道了二次,三次,四次多项式方程都有一般根式解。

因此任何一个具体的二次,三次,四次多项式方程都有根式解。

对于五次方程就不同了,方程

就有根式解,即它在复数域内的所有根都可通过有理数的 开有限次方以及加减乘除这五种运算的有限次运算表示出来。

这个道理很简单,首先它有一个实根是

,然后用
多项式除法,即可将问题归结为一个具体的四次方程的根式解。

但是,并不是随便一个具体的五次方程都有根式解

比如

, 这个就没有根式解

下次再遇到民科怼你,说他自己多么牛发明了一个多神奇的能解高次方程的方法,然后跟你说伽罗华理论是多么的荒谬时,

0f341b82253251db32b3f1423f38ab9e.png

你就不要多说,让他去解

这个方程就好了。

实际上这个方程的任何一个根都不能通过有理数的有限次开方和加减乘除的有限次运算得到。

从函数图像可以看出,它只有一个负的实根,其余四个是虚根。

e6f32d02a72b8327d72695b263b55d77.png

这个看似很简单的方程,要完整解答需要用到很高深的数学,这里不再展开。

所以,首先你得把问题描述清楚!

很多人对这个问题的描述是有误解的,各种各样的误解都有。

不能一一列举,只讲一两个,

比如没有根式解是不是就没有公式可以表达根啦?

这当然是错的,因为除了上述带根号的公式表达,还可以有其它的千千万的形式呢!

比如

这个方程没有根式解,但是它有椭圆函数公式的根表达。

这么高深的内容,民科打死都看不懂,因此民科打死都解不出这个方程。

接下来, 我尝试用高中生能理解的方式,来大致的完成「五次及以上方程无一般根式解」的证明或者解释。

但是一次应该是看不完的,多看几次应该可以。

首先我们需要群和域这两个方面的知识,不要慌,我这里不采用抽象的公理化定义。

群就是一些映射构成的集合,域我们这里主要就是指我们的数域,如有理数集,实数集等。

摘要

0. 有根式解的精确含义 1. 群的初步介绍 1.1 群的直观概念;1.2 对称群symmetric group
;1.3 置换群的一些记号 1.4 几何对称性;1.5 群同构;1.6 简单的群性质 2 域的简单介绍 2.1 域与扩域;2.2 分裂域(根域);2.3 域同构 3. 进入主题-阿贝尔-鲁菲尼定理 3.1 根式扩张;3.2 伽罗华群;3.3 伽罗华定理; 3.4 阿贝尔-鲁菲尼定理 4. 编后语

1. 群的初步介绍

1.1 群的直观概念

群(group)是有一个代数结构的集合。

我们常常用记号(G,

)来表示,这里的G就是代表集合,乘号
代表代数结构.

通常我们用乘号

表示,有时也会用加号表示,即(G, +).

这里的乘号所代表的实际上是一个二元运算,跟我们在实数集上的乘法是一样的。

即乘号

表示
到G的映射。

接下来,我们说说群的定义。

集合G上的二元运算

满足几条公理(结合律,单位元存在性,逆元存在性),我们就称集合G关于运算
成为一个群,记为(G,
)或者直接记为G.

那么这几条公理条件长什么样呢?

如果我沿着这条路讲的话,那就成了数学系大三的抽象代数课了。

这不是我想要的,我想要以高中生能理解的初等方式来展开。

将一个本质深刻,内容丰富的数学知识在不失本义的前提下以一个取巧的初等方式展现出来,

首先这是一件非常困难的事情,

其次即使假设演讲之人水平足够,要实现它也是需要看运气的。

这个运气就是要看这样的高深内容是否存在初等的表现形式。

有些有,有些没有,所以要看运气。

对于学习群的一些基本知识而言,大家的运气就很不错。

这源于群论的一个基本事实:

任何有限群都同构(等价)于对称群的一个子群。

这句话中有几个专业术语解释一下。

有限群就是群作为集合是有限集的意思,

同构呢暂时可以理解为等价,相同的意思,稍后我将详细解释,很简单。

接下来,我们讲讲对称群和子群什么意思。

1.2 对称群symmetric group

记集合

, 这是个数为n的一个有限集。

记集合

即[n]的所有排列的全体,因此有n!个,即集合

的个数为n!

看,对称群作为集合就是一大堆排列而已,这没什么不好理解的吧?

接下来说它的乘法结构。

[n]上两个一一对应

相乘怎么定义呢?

很简单,就是两者作为映射的复合,即

很明显,两个[n]上一一对应复合后依然是[n]上的一一对应。

下文我们将[n]上的一一对应毫无分歧地说成排列,置换,变换。

喜欢称为排列或者置换的人强调的是对称群作为集合,其中的元素长成什么样子;

而喜欢叫一一对应或者变换的人强调的是对称群的乘法运算,即作为映射的复合。

举个例子,假设

.

我们算一个值,比如

这就完全解释清楚了对称群

.

当n固定时,这就是一个具体的有限群,当n变化一直到无穷大,我们就得到一系列有限群。

而且之前提到的事实:任何有限群都同构(等价)于对称群的一个子群,的意思就是指,

即使这样一系列具体的群,它们却包罗万象,涵盖了所有有限群作为其子群

这里体现了特殊与一般的辩证关系

通常我们总认为一般情况总比特殊情况包含的内容更多更广,而这里告诉你在有限群的结构这方面,一般不会比特殊更多,对称群这个特殊就代表了一般。

是不是很有意思?

这其实在整体与部分的辩证关系的时候就有所体悟,把整体看成一般,部分就像特殊。

在之前的文章中,我曾经证明过自然数,整数以及有理数集这三个集合的个数是一样多,都是可数

而前一个显然是后一个的部分,这里告诉你整体跟部分一样多

详见专栏文章:

温欣提市:识多少-自然数和整数哪个更多?|初中篇3​zhuanlan.zhihu.com
e1117d0ff4a328fbb16539d39a6731d1.png

回到正题,现在讲对称群的子群

一个对称群的子群,它首先至少应该是一个子集,其次这个子集关于对称群的映射复合这个乘法运算应该能成为一个群。

将以上两点翻译成具体的精确表达就是:

对称群

的子集H被称为其子群,如果该子集H

关于乘法

依然封闭(
)

逆映射也封闭(

)。
举个例子,比如

H是由两个元素组成的四阶对称群的子集。
其中(1)是恒等变换,它乘上任何一个[n]上的变换都不会改变该变换,即跟实数中的「1」在实数乘法中的作用是一样的。
由于
再加上恒等变换的性质,

很容易得到上述H是四阶对称群
的子群。

另外,并不是每个子集都是子群,显然
这个单子集就不是子群。

现在来阶段总结一下:

我们已经非常清楚的知道了对称群

的确切含义,以及其 子群的确切含义(即子集加乘法封闭,逆封闭)。

再加上任何有限群都同构于对称群的一个子群

我们可以说我们已经对所有有限群有了初步认识

这里的重点是我们不用介绍群的抽象的公理化定义,而对称群是直观和具体的

它就是一大堆置换(或者说变换,排列,一一对应)构成的集合,而乘法就是变换的复合而已

基于这个事实,对称群的子群又被称为置换群

对称群本身就是特殊的置换群。

因此有限群其实就是置换群而已。

这些都是非常具体的,可以精确计算的,而且计算也不难理解,只是n比较大的时候会有点繁琐。

到目前为止,全部都是初等内容,高中生肯定能理解,只是对数学符号的含义适应快慢而已。

所以,大家看到了,群其实也没什么,就是一些变换构成的集合而已。

说到群,很难不让人联想到魔方

其实,由上述对称群的知识,我们知道了群就是一大堆变换构成的集合。

这句话不只是对于置换群成立,在广义上它总是对的

把三阶魔方的一种状态转到另一种状态所需的操作看成一个变换,这些变换的全体就构成了一个群,魔方群

将魔方的出厂原始状态看成起点,那么一个状态就对应一个变换。

因为状态有很多,所以这个群的元素个数很大很大,超出你的想象。

另一方面,所有这些变换,都是由6个最基本的变换复合(乘法)产生。

魔方,大家玩得最多的一个问题就是打乱后如何还原到原始状态

这个问题,目前有了很多经典的解答,它属于计算群论的范畴。

实际上,面对魔方,在你学习了群论之后你会问很多有意思的问题

比如,从任意一个打乱的状态转到原始状态最少需要多少步?
这个问题明显深刻得多。
再比如,想象力发散一些,可以转出哪些有对称艺术性的状态来?
将一连串变换看成一个整体,这个整体本身看成一步,是否能一直重复这一步就将魔方还原呢?至少需要重复多少次呢?等等

1.3 置换群的一些记号

为了让读者可以自己尝试去证明一些结论,我们引入置换群中置换的表示记号

以下这个记号对我们认识置换群是至关重要的,如有神助。

我们用(123)表示循环置换即将123映成231,即1变成2,2变成3,3变成1.

一般地,

表示循环置换将a1变成a2,a2变成a3,...

当然,没有出现在括号里面的数字就是表示该置换将该数字映成自己,即保持不变

比如

有了如上记号后,很容易计算置换群的乘法。

比如
于是我们得到:

乘法记号通常省略不写,就跟我们平时实数的乘法类似。

有一点要注意区别:群的乘法通常不满足交换律。

比如

因此

即乘法不满足交换律

1.4 几何对称性

群的历史起源,就是伽罗华galois和阿贝尔abel在考虑多项式方程的根之间的对称性时形成最初的变换雏形的。

考虑根的对称性,其实就是考虑正多边形的变换群。

因为

在复数域中的根,
在复平面上画出来正好就是正n边形的n个顶点

33f6bf99b736a1b0a42e6b58149b5d48.png

将正多边形标上号,你就能很容易得到将正多边形保持不变的几何变换构成的集合了。

c7dcd0fe7e012678d3cf0b8252959b7a.png

这些保持正多边形不变的几何变换的全体刚好构成一个群,而且元素为2n个

拿正六边形来说,就是12个,如图中所示。

这里分为两类,一类是旋转有n个,一类是翻折也是n个,即轴对称翻转

对应到上述图中,旋转就是虚线终点在顶点上的那n个,而翻折就是虚线终点在边中点的那n个。

这些群有个记号

(Dihedral group), 于是有置换群的上述知识,我们有

其中(12)就是翻折,而(123456)就是旋转

实际上D6中的12个元素都可以由(12)和(123456)这两个元素相乘得到。

而且对于一般的n, 也有类似的结论。

1.5 群同构

同构实际上是一个非常广泛和普遍的概念

其主旨是说两个事物在某种程度或者某种意义上可以看成一个事物。

其实同构的概念是天然和分类的思想相互关联的

我们努力学习同构的概念,很大的原因就是为了分类。

最容易理解的例子就是我们初中学习的三角形的全等。

三角形的全等其实就是一种同构

由于我们关心的是三角形的数学上(其实就是逻辑上的)量,即三个角和三条边,这六个要素。

而不关心你在黑板上画出来的三角形是红色还是白色,线条的粗细等。

这些问题在数学上不关心,不代表其它学科或者领域就不关心。

事实上,物理,艺术等对这些实现细节是非常关心的。

因此,在数学上一个很自然的想法,关于两个三角形是否一样(即同构或者全等),就产生了。

如果两个三角形的上述六个要素(三个角度三条边长度)相对应的相等,则我们称这两个三角形全等(即同构,或者说相等的意思)。

显然六个要素都对应相等的话,两个三角形就能通过移动而重合了。

这也很符合我们的直观感受。

于是就有了好几个判定全等的定理

比如SSS定理,它指出两个三角形的对应三条边长相等,则这两个三角形全等。

这是因为三条边对应相等能推出三个对应角度也相等。

可见,如何定义同构,是有我们的目的以及一些隐含的必然逻辑在的

比如上述三角形全等的定义,是因为如此定义的两个全等的三角形在后续的数学研究中起到的作用是完全一样的。

不会说两个全等的三角形,它们的面积或者周长却不相等。

回到我们的正题,我们来定义两个群的同构

就像三角形的全等定义一样,我们应该先搞清楚一个群有哪些要素

很明显它有两个要素,首先一个群是一个集合,其次它上面有乘法运算结构

我们只要让两个群的上述两个要素都对应相同就可。

两个集合,仅仅作为集合,我们只要他们的个数一样多即可。

即两个集合间存在双射(就是一一对应)。

于是我们有了两个群同构的严格定义如下:

我们称两个群

同构,如果存在从
的双射f(一一对应)使得:

存在两者间的双射使得乘法运算得以保持

1.6 简单的群性质

这部分可以暂时不看,等到用到时再回来仔细看看。

群的阶数

一个有限群,其作为集合的元素个数就称为该群的阶数。

比如,对称群
的阶数就是n!

交换群

一个群,如果其乘法是可交换的,则称为交换群.

也叫做Abel群,这个Abel就是我们的天才挪威数学家Abel。

虽然一般情况下一个群不一定是Abel群,但是也同样存在大量Abel群的例子。

比如

正规子群

如果群G的子群H,满足如下条件

则我们称H是G的一个正规子群。

我们用记号

表示H是G的子群,而用
表示正规子群。

可解群

可解群是概念有关五次以上多项式方程无根式解的证明过程中的一个至关重要的概念。

包括它的名字的由来,大家想想,「可解」的意思就是指的方程「可解」

如果有限群G存在如下的一个子群序列:

其中前一个是后一个的正规子群,且后一个的阶数是前一个素数倍,

则我们称群G是可解群

2 域的简单介绍

2.1 域与扩域

域的定义本身也是抽象的。

我们不给出域的抽象的精确定义,但是我们可以粗略的描述一下。

域也是一个集合,然后上面有两种运算,我们通常称为加法和乘法。

每个单独的运算加上集合本身构成一个很不错的代数结构

比如域与其加法构成一个交换群。

两个运算之间又有很好的兼容性,

比如分配率,
.

我们最熟悉的域的例子其实一直都在我们身边,那就是有理数域,实数域,复数域,它们对应的记号是

因此我们讲域的时候,根本就不需要抽象的定义,就是数的通常的加法和乘法。

我们可以直接用如下的方式来定义数域。

数域的定义

我们称复数集的一个子集为数域,如果该子集对加减乘除封闭的话。

比如除了前面说有理数集,实数集,复数集等都是数域之外,我们来构造一个。
,K是包含所有有理数的一个复数域的子集。

很容易验证K中的任何两个数的加减乘除还在K中,
因此K是一个数域。

通过上面的例子,可以看出在复数域中存在非常丰富的域

有理函数域

除了上述数域,我们再来介绍一类有理函数域。

假设K是如上的一个数域,记

是系数为K中元素的n元多项式全体,

我们称

K上的n元有理函数域。

有理函数中的「有理」二字就是模仿有理数的主旨,因为从整数到有理数的过程跟上述过程是一致的

比如一元实系数有理函数域
我们随便找一个其中的元素,比如

在我们的五次以上多项式方程的根式解的问题,只涉及到如上的数域和有理函数域。

扩域

这个很好理解,它就是指两个域作为集合,大的包含小的,那么大的就称为小的扩域

比如实数域就是有理数域的扩域。

我们通常用记号

,表示K是F的扩域,或者说从F到K是一个域的扩张。

我们常常需要在已知的一个域中添加一些新的元素,然后看看能成为什么样的域。

假设K是一个域,我们用记号K(a), 表示包含K和a的最小的域。

比如通过域保持加减乘数的定义,很容易得到

实际上,上述有理函数域的记号和定义就是我们这里的扩域的想法

2.2 分裂域(根域)

一个系数域为

的多项式P(x)的分裂域或者根域(这个名字更形象一点)是系数域的一个满足如下性质的最小扩域
:使得多项式P(x)可被分解成一次因式的乘积,而所有一次因式的根在扩域
中。
比如取有理系数域
,令多项式
.

则有理系数的p(x)的分裂域就是有理数域本身,因为该多项式的两个根都是有理数。
若令
,则情况就发生变化了.

此时有理系数的q(x)的分裂域就是
, 而不再是有理数域
了。

由此可见一个系数域关于某个多项式的分裂域就是将根加进去的最小扩域

2.3 域同构

这个概念很简单,类似于群同构,我们定义域同构如下:

我们称域K与域F同构,如果存在从K到F的双射f(一一对应)使得

3. 进入主题-阿贝尔-鲁菲尼定理

回到本文最关心的话题,就是五次及以上多项式方程无一般根式解。

我们将问题重新严格的组织一下:

以x为未知数的方程

在复数域内的根不能通过有理函数域
内的元素通过有限次开方和加减乘除这五种运算的有限次运算表示出来。

我们先从简单的入手。

先来看看一个具体多项式有根式解在数学上的本质是什么。

我们需要在扩域的基础上引进几个简单的概念。

3.1 根式扩张

如果域K是域F的一个扩域,且

则称K是F的
单根式扩张,或者单根式扩域

比如

就是有理数域的单根式扩域。

如果存在扩域系列:

使得后一个是前一个的单根式扩张,则我们称扩域K是F的根式扩张(域)。

通过前面我们对一个具体多项式有根式解的理解,我们很容易得到如下命题。

命题1

一个多项式P有根式解等价于通过有限次添加方根,将系数域K扩张为某个包含该多项式分裂域的扩域,

即该多项式的分裂域包含于系数域K的某个根式扩域中。

证明

这个比较简单。

如果该多项式的分裂域包含于系数域K的某个根式扩域中,则该多项式的每个根都在数域K的某个根式扩域中。

这由根式扩域的含义,正是指该多项式有根式解,因为每个根都用开有限次方和加减乘除组合运算表示出来了。

反过来,如果每个根都能用开有限次方和加减乘除组合运算表示出来,

那么每个根都含在数域K的某个根式扩域中。

而多项式的根是有限个,因此所有根都可含在同一个大的根式扩域中。

由分裂域是包含所有根的最小扩域知,分裂域包含于这个大的根式扩域中。QED.

这里算是第一次真正的将一个多项式是否有根式解的问题转化为比较专业的表达,即转化为该多项式的分裂域的问题

由命题1,我们真正搞懂了一个多项式是否有根式解,其本质在于它的分裂域长成什么样子。

接下来,我们进入核心部分,高能警告

3.2 伽罗华群

记系数域为F, 多项式f在数域F上的分裂域K是F的一个扩域。

不妨记多项式

我们将从分裂域K到自己的所有保持系数域元素不变的
域同构全体记为 Gal(K/F)

这个就是闻名遐迩的伽罗华群,它首先当然是一个集合,其元素是一个K到K的同构,这种叫做自同构。

由于是保持系数域元素不变,因此通常我们称为分裂域K的F-自同构,即

接下来,我们说Gal(K/F)实际上是

的子群。

K中的元素实际上都是F中的元素和多项式f(x)的根通过加减乘除得到的,

如今Gal(K/F)中的自同构在系数域F上的作用就是恒等映射而已,我们来看看

它在多项式f的根上是什么作用。

假设多项式f在分裂域K中的所有根为

因为可能有重根,所以一般而言m可能比n小。

假设

, 我们得到

由此我们得到

也是多项式f的根,即

上述等式中的

的意思就是域同构的定义,因为域同构是可以同加法,乘法交换运算的,而多项式作为函数就是加加乘乘。

如此,我们得到了Gal(K/F)中的每个元素(自同构), 其核心就是多项式的根集的一个排列而已,即它是一个置换。

基于以上理由,我们将Gal(K/F)看成

的子群, 由于m小于等于n, 当然也是
的子群。

定理1

有理数域Q上多项式

的分裂域K的伽罗华群Gal(K/Q)与乘法群
同构。

其中

是什么呢?

它就是我们初中学习初等数论时的模运算,作为集合其中的元素就是被n整除后的余数

1,2,...,n-1,这n-1个中挑可逆的元素

其乘法就是通常的乘法加一个细节,那就是超过n的,要不断减去n

比如

由上述例子知道,
不是可逆的,所以不在
中。

很明显,这是一个交换群

这个定理证明比较容易,但是涉及到一些我们这里没讲的概念,因此这里不证。

3.3 伽罗华定理

接下来的内容,就是我们的核心。

域F上的一个多项式f(x)可根式解的充要条件是该多项式的分裂域K在系数域F上的伽罗华群是可解群。

这个定理的证明相当复杂,也是最初伽罗华Galois理论最重要的一个应用,也是可解群名字的来源

要完全证明这个定理就必须把伽罗华理论从头到尾讲一遍,这几乎就是数学系大三抽象代数这门课程的全部内容。

实际上,很多不是那么认真的老师,在讲完一学期抽象代数后都没办法讲到这里。

这也就是很多院校或者老师讲数学课程的一个通病,花了很大力气来铺路,铺了一学期甚至一年,

等到最后终于似乎要看到这门课在讲什么的时候,

课程却突然结束了,理由是课时有限,哈哈哈!

因此,我们这里的处理办法就是承认这个定理是对的,接着往下走!

回到我们最早的例子。

方程

有根式解,而
无根式解

我们回到定理1,由于群

是交换群,而每个交换群都是可解群,

因此所有形如

的多项式方程都有根式解。

而多项式

在有理数域上的分裂域K的伽罗华群
是对称群
, 而这并不是可解群,

这就是该多项式无根式解的本质原因。

接下来,我们来证明我们最关心的事情!

数域F上的一般n次多项式

其中我们把字母

看成是一般的未定元,因此实际上多项式f(x)的系数是

多项式

中的元素。

定理2

上述多项式f(x)在系数域

上的分裂域K的伽罗华群

同构于对称群

.

解释

这个定理的严格证明涉及到一些代数几何的基础知识,因此这里也不太好讲。

但是我们可以领悟一下其主旨和精神

假设该多项式在分裂域中的根为

, 于是得到分裂域K:

而K的

其实就是对应的置换
这些根。

所以就刚好有分裂域K的伽罗华群同构于对称群

这里难的地方,是说你随便指定一个

这些根之间的置换都能以此为

基础,成功产生分裂域K的自同构。

这里的「成功」二字的意思是指,不至于发生矛盾,这就要求

先来举个例子,说明会发生矛盾的情况

比如假设系数域就是有理数域

, 取

然后

我们指定

我们希望它能产生K上的自同构,但是

这就产生矛盾了。

这里产生矛盾的根本原因在于,

在有理数域上是代数相关的,即

且这个多项式关于u1,u2不是对称的。

代数相关

在数域F上,存在零化他们的多项式,则称他们在数域F上是代数相关的。

否则就是代数无关的。

回到我们的主题,我们来看n=2的情况。

多项式

系数域是有理函数域
,

多项式的根是

.

分裂域为

, 显然u1,u2在系数域
上是代数相关的。

实际上零化他们的多项式正是根与系数关系(对n次方程亦是如此):

但是,好就好在零化u1,u2这些的多项式关于u1,u2是对称的。

对于一般地n>2的情况,本质原因也在于此。

即,由于根与系数的系列公式关于这些根都是对称的。

到此,定理2我们算是解释完了。QED.

引理1

当n>4, 对称群

不是可解群,而
都是可解群。

解释

对于n>4的情况,证明不难但涉及一些我们这里没讲过的群的性质和定理,这里就只能承认。

无论如何这都只是群论里面的基本事实,跟域等其它的内容是独立的

但是对于n=2,3,4的情况,可以简单证明一下。

回顾可解群的定义:

如果有限群G存在如下的一个子群序列:

其中前一个是后一个的正规子群,且后一个的阶数是前一个素数倍,

n=2, 有

而对称群S2的解释为2,是素数。

n=3, 有

而对应的素数是

n=4, 有

其中

其阶数为12,

其阶数为4,

因此上述对应的素数是

. QED.

于是,我们终于到了我们的目标:

3.4 阿贝尔-鲁菲尼定理

五次及以上一元多项式方程无一般根式解。

证明

首先,问题归结为首系数为1.

其次将问题严格描述为

以x为未知数的方程

在复数域内的根不能通过有理函数域
内的元素通过有限次开方和加减乘除这五种运算的有限次运算表示出来。

问题等价于

该多项式f(x)的分裂域不包含于系数域

内的的某个根式扩域中。

而由于多项式f(x)在系数域

上的分裂域K的伽罗华群同构于对称群
,

以及n大于等于5时,对称群

不是可解群,

伽罗华定理

4. 编后语

综上所述,对于一般性多项式方程,我们已经证明了二次,三次,四次都是有根式解,而五次及以上是没有根式解的。

对于具体的一个多项式方程是否有根式解,本质上就是要计算该多项式的分裂域的伽罗华群(这个计算更多是证明,很不容易的),然后再用群论知识判断其是否为可解群。

是可解群对应的就是多项式方程可根式解,不是可解群对应的方程就不可根式解。

可解群的名字取得多好!

这就是数学之美,单看名字就蕴含了丰富的逻辑与美的内涵!

至于没有根式解的多项式方程,如何去寻找其它形式的公式解,就是更高深的数学了!

需要进一步学习!


多谢关注和点赞,支持原创高质量文章!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值