证明辗转相除法(欧几里德算法)

本文详细阐述了如何利用欧几里得算法证明两个整数的最大公约数与其较小数和余数的关系,并通过一步步计算12和18的公约数来展示这一原理。关键步骤包括gcd(a,b)与gcd(b,a%b)的转换,最终得出gcd(a,b)与gcd(b,r)的公因数集相同结论。
摘要由CSDN通过智能技术生成

定理:两个整数的最大公约数等于其中较小的那个数和两数的相除余数的最大公约数。最大公约数(greatest common divisor)缩写为gcd。
证明:
gcd(a,b) = gcd(b,a mod b) (不妨设a>b 且r=a mod b ,r不为0) a可以表示成a = kb + r(a,b,k,r皆为正整数),则r = a mod b

  • 12,18的公因数有:1,2,3,6。
  • 由算法gcd(a,b)=gcd(b,a%b)有gcd(12,18)=gcd(18,12%18)=gcd(18,12)
  • 18,12的公因数有:1,2,3,6。
  • 接着往下算,gcd(18,12)=gcd(12,18%12)=gcd(12,6)
  • 12,6的公因数有:1,2,3,6。
  • 再往下,gcd(12,6)=gcd(6,12%6)=gcd(6,0)
  • 0,6的公因数有:1,2,3,6。
  • 最后,就由gcd(0,n)=n得gcd(0,6)=6
    第1,3,5,7他们的公因数集都是相等的,自然的,集合里的最大值也是相等的。

证明:也就是证明如果a=bq+r,那么d是a和b的公因数,当且仅当d是b和r的公因数。

1)设d是a和b的公因数,则d|a且d|b,于是d|(a−bq)。也就是说d|r, 因为r=a−bq. ==》d是b,r的公因数。
这里解释一下d|(a-bq):

因为d|a,d|b,所以有a=dx,b=dy;把d代入a-bq有dx-dyq=d(x-yq).

所以d|(a-bq)

2)设d是b和r的公因数,则d|r且d|b。于是,d|(bq+r).所以d|a ==》所以d是a,b的公因数。

综上,a,b的所有公因数和b,r的所有公因数是一样的。那么,d是a,b的最大公因数,当且仅当d是b和r的最大公因数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值