数组图像处理:直方图规定化

#include <iostream>
#include <cmath>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;
void statistics(Mat &m, float b[256], float g[256], float r[256])
{
	for (int i = 0; i < 256; i++)
		b[i] = g[i] = r[i] = 0;
	Mat_<Vec3b>::iterator it_begin = m.begin<Vec3b>();
	Mat_<Vec3b>::iterator it_end = m.end<Vec3b>();
	for (Mat_<Vec3b>::iterator it = it_begin; it != it_end; it++)
	{
		b[(*it)[0]] += 1;
		g[(*it)[1]] += 1;
		r[(*it)[2]] += 1;
	}
	float sum = m.rows * m.cols;
	for (int i = 0; i < 256; i++)
	{
		b[i] /= sum;
		g[i] /= sum;
		r[i] /= sum;
	}
}

//根据已给的bgr的直方图分布,对图像work进行规定化。
void specification(Mat &work, Mat &result, float distribution_b[], float distribution_g[], float distribution_r[])
{
	float b[256] = { 0 }, g[256] = { 0 }, r[256] = { 0 };
	statistics(work, b, g, r);
	//对数组b,g,r,distribution_b,distribution_g,distribution_r进行累积
	for (int i = 1; i < 256; i++)
	{
		b[i] += b[i - 1];
		g[i] += g[i - 1];
		r[i] += r[i - 1];
		distribution_b[i] += distribution_b[i - 1];
		distribution_g[i] += distribution_g[i - 1];
		distribution_r[i] += distribution_r[i - 1];
	}
	int map_b[256], map_g[256], map_r[256];	//规定化后的映射关系
	for (int i = 0; i < 256; i++)
	{
		float diff_b = 666, diff_g = 666, diff_r = 666;		//保存差的绝对值的最小值, 初始值只要大于1即可。
		int index_b = -1, index_g = -1, index_r = -1;		//当差的绝对值取得最小值时对应的索引
		for (int j = 0; j < 256; j++)
		{
			float diff = abs(b[i] - distribution_b[j]);
			if (diff < diff_b)
			{
				diff_b = diff;
				index_b = j;
			}

			diff = abs(g[i] - distribution_g[j]);
			if (diff < diff_g)
			{
				diff_g = diff;
				index_g = j;
			}
			diff = abs(r[i] - distribution_r[j]);
			if (diff < diff_r)
			{
				diff_r = diff;
				index_r = j;
			}
		}
		map_b[i] = index_b;
		map_g[i] = index_g;
		map_r[i] = index_r;
	}
	result = work.clone();
	Mat_<Vec3b>::iterator it_begin = result.begin<Vec3b>();
	Mat_<Vec3b>::iterator it_end = result.end<Vec3b>();
	for (Mat_<Vec3b>::iterator it = it_begin; it != it_end; it++)
	{
		(*it)[0] = map_b[(*it)[0]];
		(*it)[1] = map_g[(*it)[1]];
		(*it)[2] = map_r[(*it)[2]];
	}
}
int main()
{
	Mat image = imread("f:\\图片\\one.jpg");		//变换前图像
	Mat reference = imread("f:\\图片\\horse.png");		//用于产生规定直方图
	float b[256] = { 0 }, g[256] = { 0 }, r[256] = { 0 };
	statistics(reference, b, g, r);
	Mat result = image.clone();
	specification(image, result, b, g, r);

	namedWindow("原图像", 0);
	resizeWindow("原图像", 500, 500);
	namedWindow("规定化后", 0);
	resizeWindow("规定化后", 500, 500);
	namedWindow("规定直方图", 0);
	resizeWindow("规定直方图", 500, 500);
	imshow("原图像", image);
	imshow("规定直方图", reference);
	imshow("规定化后", result);
	waitKey(0);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值