NOIP 2003 麦森数 COGS 41 高精快速幂+神奇的位数计算公式

TAT,一开始读错题了,以为输出的位数是超过500就默认输出500的。还奇怪为什么评论区里大家都在说什么位数计算公式,对数计算的换底公式啥的。
原来输出的是原数的位数!

对于一个数k,它的位数是lg(k)+1。然而对于这道题得到一个可以放到cmath函数中的k是很困难的,题目要求的输出也只是500位。但是题目给我们的是k = 2^n - 1中的n,那么就可以用换底公式计算了,lg(k) = log2(k)/log2(10) = n/log2(10)。虽然减去一个1,不过对log的计算是没有任何影响的。

之后写个高精乘,用快速幂计算就好了,超过500位的部分忽略即可。

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define P 100000
using namespace std;

int n;

struct BigInt{
    long long h, a[200];
    BigInt(){
        h = 0;
        memset(a, 0, sizeof a);
    }
    void print(){
        for(int i = 100; i; i--){
            if(i%10 == 0 && i != 100) putchar('\n');
            printf("%.5lld", a[i]);
        }
    }
    BigInt operator * (BigInt k) const{
        BigInt res;
        res.h = k.h+h+2;
        for(int i = 1; i <= h; i++)
        for(int j = 1; j <= k.h; j++){
            res.a[i+j-1] += a[i] * k.a[j];
            res.a[i+j] += res.a[i+j-1] / P;
            res.a[i+j-1] %= P;
        }
        while(!res.a[res.h]) res.h--;
        res.h = min(res.h, (long long)100);
        return res;
    }
}zero, res;

BigInt pow(BigInt a, int i){
    if(i == 0) return zero;
    if(i == 1) return a;
    BigInt k = pow(a, i>>1);
    if(i & 1) return k*k*a;
    return k*k;
}

int main()
{
    scanf("%d", &n);
    printf("%d\n", 1+(int)(n/log2(10)));    
    res.a[1] = 2;
    res.h = 1;
    res = pow(res, n);
    res.a[1]--;
    res.print();
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值