TensorFlow快速转换Inception V3模型CKPT V2网络结构至V1

本文介绍了如何将TensorFlow中Inception V3模型的CKPT V2格式转换为V1格式,强调了转换的简便性和V1格式在模型传播中的优势。提供了转换代码,并指出尽管转换不涉及复杂技术,但需要了解输出节点和网络源码。此外,提及PD格式在某些情况下可能更受欢迎。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是基于VGGNet的图像分类模型而做。通常输出网络结构问题分为两类:CKPT和PD。其中CKPT V2是data包与index两者的集合,为了网络模型的便携性,我们认为CheckPoint V1与freeze掉的PD架构更适合于传播,在此默认大家对图像分类模型已有了解。

话不多说,先放代码:

import tensorflow as tf
from tensorflow.core.protobuf import saver_pb2

model_dir=''
prefix_path=model_dir+'image_model'
meta_file=prefix_path+'.meta'

with tf.Session() as sess:
    saver=tf.train.import_meta_graph(meta_file,clear_devices=True)
    
    for op in sess.graph.get_operations():
        print(op.name,op.values())
    
    saver.restore(sess,prefix_path)

    #注意的是tf.train.Saver里需要指定V1版本
    saver2=tf.train.Saver(write_version=saver_pb2.SaverDef.V1)

    saver2.save(sess,model_dir+'/ckpt/image_model.ckpt')

 按照这个方法执行,下面一坨就是V2,上面是重新生成的V1。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值