一、介绍
- 普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
- 普利姆的算法:
- 设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
- 若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
- 若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
- 重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
二、最小生成树
- 修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。
- 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
- N个顶点,一定有N-1条边
- 包含全部顶点
- N-1条边都在图中
- 求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法。
例图:
三、应用场景-修路问题
- 有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
- 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
- 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
- 思路:尽可能的选择少的路线,并且每条路线最小,保证总里程数最少。
四、代码实现
public class PrimAlgorithm {
public static void main(String[] args) {
final int max = Integer.MAX_VALUE;
char[] data = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int peaks = data.length;
int[][] weight = {
{max, 5, 7, max, max, max, 2},
{5, max, max, 9, max, max, 3},
{7, max, max, max, 8, max, max},
{max, 9, max, max, max, 4, max},
{max, max, 8, max, max, 5, 4},
{max, max, max, 4, 5, max, 6},
{2, 3, max, max, 4, 6, max}
};
MinTree minTree = new MinTree(peaks, data, weight);
minTree.showResult();
}
}
class MinTree {
MinGraph graph;
resultPeak[] result;
int resultIndex;
public MinTree(int peaks, char data[], int[][] weight) {
graph = new MinGraph(peaks);
result = new resultPeak[peaks];
createGraph(peaks, data, weight);
prim(graph, 1);
}
public void createGraph(int peaks, char data[], int[][] weight) {
for (int i = 0; i < peaks; i++) {
graph.data[i] = data[i];
for (int j = 0; j < peaks; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
public void showGraph(MinGraph graph) {
System.out.println("----------邻接矩阵----------");
for (int[] link : graph.weight) {
for (int i = 0; i < link.length; i++) {
System.out.printf("%12d", link[i]);
}
System.out.println();
}
System.out.println("----------邻接矩阵----------");
}
public void prim(MinGraph graph, int index) {
int visited[] = new int[graph.peakSize];
visited[index] = 1;
int peakIndex1 = -1;
int peakIndex2 = -1;
int minWeight = Integer.MAX_VALUE;
for (int k = 1; k < graph.peakSize; k++) {
for (int i = 0; i < graph.peakSize; i++) {
for (int j = 0; j < graph.peakSize; j++) {
if (visited[i] == 1 && visited[j] == 0 && graph.weight[i][j] < minWeight) {
minWeight = graph.weight[i][j];
peakIndex1 = i;
peakIndex2 = j;
}
}
}
result[resultIndex++] = new resultPeak(graph.data[peakIndex1],graph.data[peakIndex2],minWeight);
visited[peakIndex2] = 1;
minWeight = Integer.MAX_VALUE;
}
}
public void showResult() {
System.out.println("----------结果集----------");
for (int i = 0; i < result.length; i++) {
if(result[i] != null){
System.out.println(result[i]);
}
}
System.out.println("----------结果集----------");
}
}
class MinGraph {
int peakSize;
char[] data;
int[][] weight;
public MinGraph(int peakSize) {
this.peakSize = peakSize;
data = new char[peakSize];
weight = new int[peakSize][peakSize];
}
}
class resultPeak {
char begin;
char end;
int weight;
public resultPeak(char begin, char end, int weight) {
this.begin = begin;
this.end = end;
this.weight = weight;
}
@Override
public String toString() {
return "resultPeak{" + begin + " --> " + end + " weight=" + weight + '}';
}
}