抽象代数和AES加密算法

抽象代数

参考教材:密码编码学与网络安全

AES加密的数学基础

第一遍读感觉教材上对数学基础(群环域,多项式运算)P72-P91给的莫名奇妙

然后参考了知乎回答对群环域的解释

此时第二遍读教材,发现其实教材在讲每一部分的开始都写了教学目的.

学习这部分一定要明确目的,在陷入定理的证明时或者公式应用时时刻想想是在干什么

引入多项式构造 G F ( p n ) GF(p^n) GF(pn)这一想法真的太神奇了,
将整数上的数论定理应用于多项式也真的太神奇了

另,教材P74页的图4.2是有错误的

抽象代数基础

图片来自代数结构入门:群、环、域、向量空间 - 知乎 (zhihu.com)

代数结构入门:群、环、域、向量空间

< G , ⋅ > <G,·> <G,>表示一个定义了二元关系 ⋅ · 的集合(注意这里 ⋅ · 不一定是乘号,可以是所有二元关系的抽象表示)

如果G满足:

A1封闭性: ∀ a , b ∈ G → a ⋅ b ∈ b \forall a,b\in G\rightarrow a·b\in b a,bGabb

A2结合律: ∀ a , b ∈ G , a ⋅ ( b ⋅ c ) = ( a ⋅ b ) ⋅ c \forall a,b\in G,a·(b·c)=(a·b)·c a,bG,a(bc)=(ab)c

A3单位元: ∃ e ∈ G , ∀ a ∈ G , e ⋅ a = a ⋅ e = a \exist e\in G,\forall a\in G,e·a=a·e=a eG,aG,ea=ae=a

A4逆元: ∀ a ∈ G , ∃ a − 1 , a ⋅ a − 1 = a − 1 ⋅ a = e \forall a\in G,\exist a^{-1},a·a^{-1}=a^{-1}·a=e aG,a1,aa1=a1a=e

这里 − 1 ^{-1} 1不是一定是-1次幂,只是逆元的表示形式

集合G+A1+A2+A3+A4=群G

交换群

A5交换律: ∀ a , b ∈ G , a ⋅ b = b ⋅ a \forall a,b\in G,a·b=b·a a,bG,ab=ba

群G+A5=交换群G

< R , + , × > <R,+,\times> <R,+,×>R是一个有两种二元运算的集合,这两种二元运算分别为加法 + + +和乘法 × \times ×

已知 < R , + > <R,+> <R,+>是交换群

如果R再满足

M1乘法封闭性: ∀ a , b ∈ R , a × b ∈ R \forall a,b\in R,a\times b\in R a,bR,a×bR

M2乘法结合律: ∀ a , b , c ∈ R , a × ( b × c ) = ( a × b ) × c \forall a,b,c\in R,a\times (b\times c)=(a\times b)\times c a,b,cR,a×(b×c)=(a×b)×c

M3乘法对加法的分配律: ∀ a , b , c ∈ R , { a × ( b + c ) = a × b + a × c ( a + b ) × c = a × c + b × c \forall a,b,c\in R,\begin{cases}a\times (b+c)=a\times b+a\times c\\(a+b)\times c=a\times c+b\times c\end{cases} a,b,cR,{a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c

注意这里没有写 a × ( b + c ) = ( b + c ) × a a \times (b+c)=(b+c)\times a a×(b+c)=(b+c)×a

因为这样写实际上是满足乘法交换律,而满足分配律不一定满足交换律,比如矩阵乘法

矩阵的左右乘结果一般是不一样的,但是矩阵乘法对矩阵加法是有结合律的

则称R为环

交换环

如果环R再满足

M4乘法交换律: ∀ a , b , c ∈ R , ( a × b ) × c = a × ( b × c ) \forall a,b,c\in R,(a\times b)\times c=a\times (b\times c) a,b,cR,(a×b)×c=a×(b×c)

显然 R n ( Q ) R_n(Q) Rn(Q)是环但不是交换环

则称R为交换环

整环

如果交换环R再满足

M5乘法单位元: ∃ e , ∀ a ∈ R , e × a = a × e = a \exist e,\forall a\in R,e\times a=a\times e=a e,aR,e×a=a×e=a

R = S R=S R=S为整数时, e = 1 e=1 e=1

R = R n ( Q ) R=R_n(Q) R=Rn(Q),n阶实数矩阵集合, e = E ( n ) e=E(n) e=E(n)n阶单位矩阵

M6无零因子,: ∀ a , b ∈ R , a × b = 0 → a = 0   o r   b = 0 \forall a,b\in R,a\times b=0\rightarrow a=0\ or\ b=0 a,bR,a×b=0a=0 or b=0

则称R为整环

怎么理解"无0因子"?

显然 R n ( Q ) R_n(Q) Rn(Q)不满足M6,因为两个矩阵 A , B A,B A,B乘积是个0矩阵并不能说明 A A A或者 B B B矩阵有至少一个是零矩阵

比如

A = [ 0   0   0 0   0   0 0   0   1 ]       B = [ 0   0   1 0   0   0 0   0   0 ] A=\begin{bmatrix} 0\ 0\ 0\\ 0\ 0\ 0\\ 0\ 0\ 1\\ \end{bmatrix}\ \ \ \ \ B=\begin{bmatrix} 0\ 0\ 1\\ 0\ 0\ 0\\ 0\ 0\ 0\\ \end{bmatrix} A=0 0 00 0 00 0 1     B=0 0 10 0 00 0 0
又如,

Z 6 = { 0 , 1 , 2 , 3 , 4 , 5 } Z_6=\{0,1,2,3,4,5\} Z6={0,1,2,3,4,5},

定义 Z 6 Z_6 Z6上的乘法 ⊗ \otimes a ⊗ b = ( a × b   ) m o d   6 a\otimes b=(a\times b\ )mod\ 6 ab=(a×b )mod 6

定义 Z 6 Z_6 Z6上的加法 ⊕ \oplus a ⊕ b = ( a + b ) m o d   6 a\oplus b=(a+b)mod\ 6 ab=(a+b)mod 6

显然 Z 6 Z_6 Z6满足 A 1 − A 5 , M 1 − M 5 A_1-A_5,M_1-M_5 A1A5,M1M5

但是 < Z 6 , + , × > <Z_6,+,\times> <Z6,+,×>不满足无零因子,比如

2 ⊗ 3 = ( 2 × 3 ) m o d   6 = 6 m o d   6 = 0 2\otimes 3=(2\times 3)mod \ 6=6mod\ 6=0 23=(2×3)mod 6=6mod 6=0

就是说,0这个元素一定也是在集合R中存在的,并且乘法运算结果为0一定和引入这个元素0有关

< R , + , × > <R,+,\times> <R,+,×>为一个整环,如果R再满足

M7乘法逆元: ∀ a ≠ 0 ∈ R , ∃ a − 1 ∈ R , a × a − 1 = 1 \forall a≠0\in R,\exist a^{-1}\in R,a\times a^{-1}=1 a=0R,a1R,a×a1=1则称 a − 1 a^{-1} a1为a的乘法逆元

注意乘法逆元也是 R R R中的

定义乘法逆元的作用实际上是可以使用除法,
除以一个数等于乘以该数的乘法逆元

比如对于 < Z 7 , + , × > <Z_7,+,\times> <Z7,+,×>,由于模数为7是一个质数,由拓展欧几里得定理可知,

1到6都存在 Z 7 Z_7 Z7上的mod 7意义下的乘法逆元(0除外)

再比如对于全体整数就不是任何元素都有乘法逆元,只有1和-1有乘法逆元,
任何绝对值大于1的整数其乘法逆元应该是分数,不属于整数.

除了0之外的其他元素都有乘法逆元的整环是域

有限域GF§

符号意义:

G F ( p ) = < Z p , ⊕ , ⊗ > GF(p)=<Z_p,\oplus,\otimes > GF(p)=<Zp,,>

G F : G a l o i s F i e l d GF:Galois Field GF:GaloisField,伽罗华域

p p p:表示一个正素数

⊕ : ∀ a , b ∈ Z p , a ⊕ b = ( a + b )   m o d   p \oplus:\forall a,b\in Z_p,a\oplus b=(a+b)\ mod\ p :a,bZp,ab=(a+b) mod p即模p加法

⊗ : ∀ a , b ∈ Z p , a ⊗ b = ( a × b )   m o d   p \otimes : \forall a,b\in Z_p,a\otimes b=(a\times b)\ mod\ p :a,bZp,ab=(a×b) mod p即模屁乘法

为什么一定要求是一个素数?

当N为一个合数的时候 Z N = { 1 , 2 , 3 , . . . , N − 2 , N − 1 } Z_N=\{1,2,3,...,N-2,N-1\} ZN={1,2,3,...,N2,N1}不满足 M 6 M_6 M6无零因子,不是整环,因此不是域

为什么不满足 M 6 M_6 M6?

由已知,N是合数,则至少存在 n ∈ Z N , 1 < n < N , n ∣ N n\in Z_N,1<n<N,n|N nZN,1<n<N,nN

如果 n 2 = N n^2=N n2=N,则有 n ⊗ n = n × n   m o d   N = 0 n\otimes n=n\times n\ mod\ N=0 nn=n×n mod N=0

如果 n 2 ! = N n^2!=N n2!=N,则 ∃ n ′ ∈ ( 1 , N ) , n n ′ = N \exist n'\in (1,N),nn'=N n(1,N),nn=N那么 n ⊗ n ′ = n n ′   m o d   N = N   m o d   N = 0 n\otimes n'=nn'\ mod\ N=N\ mod \ N=0 nn=nn mod N=N mod N=0

故选取p为素数,就是为了保证 M 6 M_6 M6无零因子

同时,选取一个素数作为mod值,保证了 M 7 M_7 M7乘法逆元:

∀ a ∈ Z p , a ⊗ x = 1 \forall a\in Z_p,a\otimes x=1 aZp,ax=1,即 a x ≡ 1 ( m o d   p ) ax\equiv 1(mod\ p) ax1(mod p),显然当p为一个素数时有 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1由2拓展欧几里得定理即可求出x的值

因此 Z p Z_p Zp就是一个有限域,用 G F ( p ) GF(p) GF(p)表示

Z p Z_p Zp上的数论定理

拓展欧几里得定理求乘法逆元
int exgcd(const int &a, const int &b, int &x, int &y) {//拓展欧几里得算法ax+by=1=gcd(a,b)
	if (b == 0) {
		x = 1;
		y = 0;
		return a;
	}
	int x2, y2;
	int d = exgcd(b, a % b, x2, y2);
	x = y2;
	y = x2 - a / b * y2;
	return d;
}

int inverse(const int &a, const int &mod) {//求a在模mod下的逆元
	int x, y;
	exgcd(a, mod, x, y);
	return ((x % mod) + mod) % mod;
}
快速幂
int quick_pow(const int &base, const int &index, const int &mod) {//bash^index(% mod)
	if (index == 0)
		return 1;
	else if (index == 1)
		return base % mod;
	else if (index % 2) {
		return quick_pow(base * base % mod, index >> 1, mod) % mod;
	} else {
		return base * quick_pow(base * base % mod, index >> 1, mod) % mod;
	}
}

多项式算术

为什么突然扯到"多项式算数"呢?

前面我们证明了对于整数集 Z N = { 0 , 1 , 2 , 3 , . . . , N − 1 } Z_N=\{0,1,2,3,...,N-1\} ZN={0,1,2,3,...,N1},只有当 ∣ Z N ∣ = N |Z_N|=N ZN=N为素数p时, Z p Z_p Zp才为一个域

如果想要得到一个元素个数为 2 n 2^n 2n的域, 2 n 2^n 2n当n>1时是一个合数,显然 Z p Z_p Zp做不到.

为什么要得到一个元素个数为 2 n 2^n 2n的域?计算机使用二进制编码,编码位数为n时就有 2 n 2^n 2n种编码,AES加密算法就用到了 G F ( 2 8 ) GF(2^8) GF(28)

并且,在 Z 8 Z_8 Z8中的数字乘法,其结果中个数字的出现次数显然是不均匀的,比如1出现了4次,2就出现了8次

模8乘法01234567
000000000
101234567
202460246
303614725
404040443
505274163
606424342
707653321

而一个理想的密码是不能暴露词频信息的,显然用 Z 8 Z_8 Z8上的变换进行加密不理想,

Z 8 Z_8 Z8上不满足无0因子,并且乘法结果不均匀,
于是想一种乘法和除法的构造方法, 使得8个元素可以满足无0因子,并且可以有乘法逆(0除外)即成为一个域,并且乘法或者加法的结果的频率相等

怎么实现这个想法呢?

使用多项式运算就可以解决这个问题,因此引入了多项式运算

首先要研究的是如何构造一个有8个元素的域

将数的性质拓展到多项式式上

我们使用的一般是代数基本规则的普通多项式运算

然后拓展到系数在 G F ( p ) GF(p) GF(p)中的多项式运算

然后再拓展到系数在 G F ( p ) GF(p) GF(p),模一个 n n n次多项式 m ( x ) m(x) m(x)的多项式运算

最终目标是理解并应用最后一种多项式

普通多项式运算

多项式次数:最高次项的次数

多项式的表示:
f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 = ∑ i = 0 n a i x i , a n ≠ 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0=\sum_{i=0}^na_ix^i,a_n≠0 f(x)=anxn+an1xn1+...+a1x+a0=i=0naixi,an=0
如果 ∀ a i ∈ S \forall a_i\in S aiS则称 f ( x ) f(x) f(x)是系数集 S S S上的多项式,令 < A , + , × > <A,+,\times > <A,+,×>表示S上的所有多项式以及加法和乘法二元关系

S = Z S=Z S=Z表示整数集的时候,显然A是满足 A 1 − A 5 , M 1 − M 6 A_1-A_5,M_1-M_6 A1A5,M1M6,是个整环,

但是不满足乘法逆元,比如 x x x的乘法逆元 x − 1 x^{-1} x1,是一个指数为负的多项式,显然不在 A A A


f ( x ) = ∑ i = 0 n a i x i g ( x ) = ∑ i = 0 m b i x i a n b m ≠ 0 , n ≥ m f(x)=\sum_{i=0}^na_ix^i\\ g(x)=\sum_{i=0}^mb_ix^i\\ a_nb_m≠0,n\ge m f(x)=i=0naixig(x)=i=0mbixianbm=0,nm
则普通多项式的加法运算
f ( x ) + g ( x ) = ∑ i = 0 m ( a i + b i ) x i + ∑ i = m + 1 n a i x i f(x)+g(x)=\sum_{i=0}^m(a_i+b_i)x^i+\sum_{i=m+1}^na_i x^i f(x)+g(x)=i=0m(ai+bi)xi+i=m+1naixi
普通多项式乘法
f ( x ) g ( x ) = ∑ i = 0 n + m c i x i c i = a 0 b i + a 1 b i − 1 + . . . + a i b 0 f(x)g(x)=\sum_{i=0}^{n+m}c_ix^i\\ c_i=a_0b_i+a_1b_{i-1}+...+a_ib_0 f(x)g(x)=i=0n+mcixici=a0bi+a1bi1+...+aib0

系数在 Z p Z_p Zp中的多项式运算

当系数集是全体整数的时候,由于系数不都有乘法逆元,因此无法进行多项式除法

当系数集是一个域的时候,系数都有了乘法逆元,可以对多项式引入除法(带余除法)

可以类比整数的除法,求余数用 % \% %,求商用 / / /

那么在 Z p Z_p Zp中的多项式,求余式用 % \% %,求商式用 / / /

比如对于 Z 2 Z_2 Z2上的多项式 f ( x ) = x 4 + 1 = ( x + 1 ) ( x 3 + x 2 + x + 1 ) f(x)=x^4+1=(x+1)(x^3+x^2+x+1) f(x)=x4+1=(x+1)(x3+x2+x+1),则 f ( x ) / ( x + 1 ) = x 3 + x 2 + x + 1 f(x)/(x+1)=x^3+x^2+x+1 f(x)/(x+1)=x3+x2+x+1

设系数域为 < Z p , ⊕ , ⊗ > <Z_p,\oplus,\otimes > <Zp,,>

Z p Z_p Zp上的两个多项式
f ( x ) = ∑ i = 0 n a i x i g ( x ) = ∑ i = 0 m b i x i a n , b m ≠ 0 , n ≥ m f(x)=\sum_{i=0}^na_ix^i\\ g(x)=\sum_{i=0}^mb_ix^i\\ a_n,b_m≠0,n\ge m f(x)=i=0naixig(x)=i=0mbixian,bm=0,nm

Z p Z_p Zp多项式的四则运算

Z p Z_p Zp上的多项式加法(减法类似)为
f ( x ) + g ( x ) = ∑ i = 0 m ( a i ⊕ b i ) x i + ∑ i = m + 1 n a i x i = ∑ i = 0 m ( a i + b i ) m o d   p   × x i + ∑ i = m + 1 n a i x i f(x)+g(x)=\sum_{i=0}^m(a_i\oplus b_i)x^i+\sum_{i=m+1}^na_i x^i\\ =\sum_{i=0}^m(a_i+ b_i)mod\ p\ \times x^i+\sum_{i=m+1}^na_i x^i f(x)+g(x)=i=0m(aibi)xi+i=m+1naixi=i=0m(ai+bi)mod p ×xi+i=m+1naixi

Z p Z_p Zp上的多项式乘法为
f ( x ) g ( x ) = ∑ i = 0 n + m c i x i c i = ( a 0 b i + a 1 b i − 1 + . . . + a i b 0 ) m o d   p f(x)g(x)=\sum_{i=0}^{n+m}c_ix^i\\ c_i=(a_0b_i+a_1b_{i-1}+...+a_ib_0)mod\ p f(x)g(x)=i=0n+mcixici=(a0bi+a1bi1+...+aib0)mod p
Z p Z_p Zp上的带余式除法
f ( x ) = q ( x ) g ( x ) + r ( x ) f(x)=q(x)g(x)+r(x) f(x)=q(x)g(x)+r(x)
意思是 f ( x ) ÷ g ( x ) = q ( x ) . . . r ( x ) f(x)\div g(x)=q(x)...r(x) f(x)÷g(x)=q(x)...r(x)

D e g r e e ( f ) Degree(f) Degree(f)表示多项式f的阶,并且 D e g r e e ( f ) = n , D e g r e e ( g ) = m , Degree(f)=n,Degree(g)=m, Degree(f)=n,Degree(g)=m,则有 D e g r e e ( q ) = n − m D e g r e e ( r ) ≤ m − 1 Degree(q)=n-m\\ Degree(r)\le m-1 Degree(q)=nmDegree(r)m1

Z p Z_p Zp多项式的欧几里得定理

定义 d ( x ) d(x) d(x) a ( x ) , b ( x ) a(x),b(x) a(x),b(x)的最大公因式,即 d ( x ) d(x) d(x)是能够整除 a ( x ) , b ( x ) a(x),b(x) a(x),b(x)的所有多项式中次数最高的
g c d ( a ( x ) , b ( x ) ) = g c d [ b ( x ) , a ( x ) % b ( x ) ] gcd(a(x),b(x))=gcd[b(x),a(x)\%b(x)] gcd(a(x),b(x))=gcd[b(x),a(x)%b(x)]

Z p Z_p Zp上多项式再mod n次素多项式

对于 Z p Z_p Zp上次数高于n-1的多项式 f ( x ) f(x) f(x),需要mod一个 Z p Z_p Zp上的n次素多项式 m ( x ) m(x) m(x),如此限制 f ( x ) f(x) f(x)的次数在 [ 0 , n − 1 ] [0,n-1] [0,n1]

什么是"素多项式"? Z p Z_p Zp上的素多项式 m ( x ) m(x) m(x)无法被 Z p Z_p Zp上的任意多项式整除

m ( x ) m(x) m(x)的次数为n,则 Z p Z_p Zp上的多项式 m o d   m ( x ) mod\ m(x) mod m(x)都会落在次数小于等于n-1的多项式集 F F F

显然 F F F中的多项式都可以表示为
∀ f ( x ) ∈ F , f ( x ) = a 0 + a 1 x + . . . + a n − 1 x n − 1 , ∀ a i ∈ Z p \forall f(x)\in F,f(x)=a_0+a_1x+...+a_{n-1}x^{n-1},\forall a_i\in Z_p f(x)F,f(x)=a0+a1x+...+an1xn1,aiZp
那么这样的多项式一共有 p n p^n pn个(系数的乘法原理),即模 m ( x ) m(x) m(x)构成的剩余类

现在类比 Z p Z_p Zp,证明 F F F是一个域

显然加减乘封闭且结合律分配律交换律均满足, F F F容易判定为交换环

由于1也是 F F F中的多项式,因此存在乘法单位元1,

下面证明M6无零因子

由于k阶多项式的k次项系数不为零,假设有两个非零多项式,其最高次项分别为 a i x i , b j x j a_ix^i,b_jx^j aixi,bjxj

乘积多项式的最高次项为 a i b j x i + j a_ib_jx^{i+j} aibjxi+j如果指数 i + j ≥ n i+j\ge n i+jn则对 m ( x ) m(x) m(x)取模,如果系数 a i b j ≥ p a_ib_j\ge p aibjp则对 p p p取模

显然p是一个素数, a i b j = a i × b j a_ib_j=a_i\times b_j aibj=ai×bj是一个合数,合数对素数取模显然不为0

因此任何两个非零多项式乘积一定非零,M6无零因子得证

到此F被证明是整环

无零因子就是 G F ( 2 3 ) GF(2^3) GF(23)是域但是 Z 8 Z_8 Z8不是域的本质原因

下面证明任意F中的非0多项式都在F中有乘法逆元

f ( x ) g ( x ) ≡ 1 ( m o d   m ( x ) ) f(x)g(x)\equiv 1(mod\ m(x)) f(x)g(x)1(mod m(x))

g ( x ) f ( x ) + k ( x ) m ( x ) = 1 g(x)f(x)+k(x)m(x)=1 g(x)f(x)+k(x)m(x)=1

m ( x ) m(x) m(x)为素因式,有欧几里得定理知上式有解

因此M7乘法逆元得证

因此 F F F是域

F F F Z p Z_p Zp的不同

我们在证明 Z p Z_p Zp是域的时候发现,对于整数集 Z N = { 0 , 1 , 2 , 3 , . . . , N − 1 } Z_N=\{0,1,2,3,...,N-1\} ZN={0,1,2,3,...,N1},只有当 ∣ Z N ∣ = N |Z_N|=N ZN=N为素数p时, Z p Z_p Zp才为一个域

而现在 ∣ F ∣ = p n |F|=p^n F=pn显然当 n > 1 n>1 n>1时是一个合数,但是 F F F仍然是一个域

F F F记作 G F ( p n ) GF(p^n) GF(pn)表示伽罗华域

F = G F ( p n ) F=GF(p^n) F=GF(pn)上的乘法逆元

f ( x ) g ( x ) ≡ 1 ( m o d   m ( x ) ) g ( x ) f ( x ) + k ( x ) m ( x ) = 1 g c d ( f ( x ) , m ( x ) ) = 1 f(x)g(x)\equiv 1(mod \ m(x))\\ g(x)f(x)+k(x)m(x)=1\\ gcd(f(x),m(x))=1 f(x)g(x)1(mod m(x))g(x)f(x)+k(x)m(x)=1gcd(f(x),m(x))=1

显然可以将整数上的拓展欧几里得推广到F上

G F ( 2 n ) GF(2^n) GF(2n)上构造结果分布均匀的二元运算

G F ( 2 n ) GF(2^n) GF(2n)上的多项式各项的系数要么是0,要么是1,可以用二进制数表示

比如 x 3 + x 2 + 1 x^3+x^2+1 x3+x2+1就可以表示为 1101 1101 1101

加法

由于系数要么是0要么是1,即系数要自动对2取模

那么多项式的加法就是二进制数按位异或

比如 ( x 3 + x 2 + x ) + ( x 4 + x + 1 ) = x 4 + x 3 + x 2 + 2 x + 1 = x 4 + x 3 + x 2 + 1 (x^3+x^2+x)+(x^4+x+1)=x^4+x^3+x^2+2x+1=x^4+x^3+x^2+1 (x3+x2+x)+(x4+x+1)=x4+x3+x2+2x+1=x4+x3+x2+1

01110 ⊕ 10011 = 11101 01110\oplus 10011=11101 0111010011=11101

乘法

教材上一本正经地写了一堆用字母表示的多项式,看上去头大.

从一个例子入手可能比较容易理解:

考虑AES加密算法使用到的 G F ( 2 8 ) GF(2^8) GF(28),取 m ( x ) = x 8 + x 4 + x 3 + x + 1 m(x)=x^8+x^4+x^3+x+1 m(x)=x8+x4+x3+x+1为模.

f ( x ) = x 6 + x 4 + x 2 + x + 1 f(x)=x^6+x^4+x^2+x+1 f(x)=x6+x4+x2+x+1

g ( x ) = x 7 + x + 1 g(x)=x^7+x+1 g(x)=x7+x+1

f ( x ) ⊗ g ( x ) = f ( x ) × g ( x ) m o d    m ( x ) f(x)\otimes g(x)=f(x)\times g(x)\mod m(x) f(x)g(x)=f(x)×g(x)modm(x)

拆分成项

容易想到的是把 g ( x ) g(x) g(x)按幂次拆分成项然后用f(x)与g(x)的各项相乘之后相加,而相加在"加法"中我们已经认识到可以通过两个多项式异或这种简洁的方式实现,因此我们现在把精力放在 f ( x ) f(x) f(x)如何和一个 x k x^k xk项相乘上
f ( x ) × g ( x ) m o d    m ( x ) = f ( x ) × ( 1 + x + x 7 ) m o d    m ( x ) = f ( x ) × 1 m o d    m ( x ) + f ( x ) × x m o d    m ( x ) + f ( x ) × x 7 m o d    m ( x ) f(x)\times g(x)\mod m(x)\\ =f(x)\times(1+x+x^7)\mod m(x)\\ =f(x)\times 1\mod m(x)+f(x)\times x\mod m(x)+f(x)\times x^7\mod m(x) f(x)×g(x)modm(x)=f(x)×(1+x+x7)modm(x)=f(x)×1modm(x)+f(x)×xmodm(x)+f(x)×x7modm(x)
问题转化为如何求 f ( x ) × x k m o d    m ( x ) f(x)\times x^k\mod m(x) f(x)×xkmodm(x)

f ( x ) × x k m o d    m ( x ) f(x)\times x^k\mod m(x) f(x)×xkmodm(x)

由于
f ( x ) × x k m o d    m ( x ) = { [ ( f ( x ) × x m o d    m ( x ) ) × x m o d    m ( x ) ] × . . . × x m o d    m ( x ) } × x m o d    m ( x ) f(x)\times x^k\mod m(x)\\ =\{[(f(x)\times x\mod m(x))\times x\mod m(x)]\times ...\times x\mod m(x)\}\times x\mod m(x) f(x)×xkmodm(x)={[(f(x)×xmodm(x))×xmodm(x)]×...×xmodm(x)}×xmodm(x)
因此问题又可以转换为怎么跨出求 f ( x ) f(x) f(x) f ( x ) × x m o d    m ( x ) f(x)\times x\mod m(x) f(x)×xmodm(x)这第一步

f ( x ) × x m o d    m ( x ) f(x)\times x\mod m(x) f(x)×xmodm(x)

假设 f ( x ) = a 7 x 7 + a 6 x 6 + . . . + a 1 x + a 0 f(x)=a_7x^7+a_6x^6+...+a_1x+a_0 f(x)=a7x7+a6x6+...+a1x+a0表示 G F ( 2 8 ) GF(2^8) GF(28)上的任意多项式

x × f ( x ) = a 7 x 8 + a 6 x 7 + . . . + a 0 x x\times f(x)=a_7x^8+a_6x^7+...+a_0x x×f(x)=a7x8+a6x7+...+a0x

如果用二进制表示,那么
f ( x ) = a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 x × f ( x ) = a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 \begin{aligned} f(x)=&a_7&a_6&a_5&a_4&a_3&a_2&a_1&a_0\\ x\times f(x)=a_7&a_6&a_5&a_4&a_3&a_2&a_1&a_0&0 \end{aligned} f(x)=x×f(x)=a7a7a6a6a5a5a4a4a3a3a2a2a1a1a0a00
我们可以发现 f ( x ) f(x) f(x) x × f ( x ) x\times f(x) x×f(x)只需要将 f ( x ) f(x) f(x)的二进制表示左移一位,

下面考虑如何取模

如果 a 7 = 0 a_7=0 a7=0 x × f ( x ) x\times f(x) x×f(x)顶多是一个7次多项式,如果有 a 6 = 0 a_6=0 a6=0则顶多是一个6次多项式,一个七次多项式 x × f ( x ) x\times f(x) x×f(x)去mod一个8次多项式 m ( x ) m(x) m(x)实乃以卵击石,直接被8次多项式劝返

如果 a 7 = 1 a_7=1 a7=1 x × f ( x ) x\times f(x) x×f(x) m ( x ) m(x) m(x)都是8次多项式,算是旗鼓相当,可以一战

此时 x × f ( x ) x\times f(x) x×f(x)可以分成精锐的头部 x 8 x^8 x8与累赘的尾部 a 6 x 7 + a 5 x 6 + . . . + a 0 x a_6x^7+a_5x^6+...+a_0x a6x7+a5x6+...+a0x,

这个尾部对 m ( x ) m(x) m(x)取模还是被劝返,只留下精锐的头部 x 8 x^8 x8独自抗衡 m ( x ) m(x) m(x)

那么问题转化为 x 8 x^8 x8 m ( x ) = x 8 + x 4 + x 3 + x + 1 m(x)=x^8+x^4+x^3+x+1 m(x)=x8+x4+x3+x+1取模,考虑如何取模?

x 8 m o d    m ( x ) x^8 \mod m(x) x8modm(x)

x 8 x^8 x8形单影只,只能单挑 m ( x ) m(x) m(x) x 8 x^8 x8项,无暇处理 m ( x ) m(x) m(x)的一伙子小弟,

于是 x 8 x^8 x8利用其系数都在 G F ( 2 ) GF(2) GF(2)上,无中生有搬来了一伙子小弟:
x 8 ≡ x 8 + 2 x 7 + 2 x 6 + . . . + 2 x + 2 ( 系 数 m o d 2 ) x^8\equiv x^8+2x^7+2x^6+...+2x+2(系数mod 2) x8x8+2x7+2x6+...+2x+2(mod2)
此时用 x 8 + 2 x 7 + 2 x 6 + . . . + 2 x + 2 x^8+2x^7+2x^6+...+2x+2 x8+2x7+2x6+...+2x+2 m o d    m ( x ) \mod m(x) modm(x)终于可以大干一场了,还得是门当户对地干,次数相同的项单挑

x 8 ≡ x 8 + 2 x 7 + 2 x 6 + . . . + 2 x + 2 ( 系 数 m o d 2 ) x^8\equiv x^8+2x^7+2x^6+...+2x+2(系数mod 2) x8x8+2x7+2x6+...+2x+2(mod2)作为被除数, m ( x ) m(x) m(x)作为除数,余数即为所求结果

战争一开始,商1之后被除数减去除数得到 2 x 7 + 2 x 6 + 2 x 5 + x 4 + x 3 + 2 x 2 + x + 1 ≡ x 4 + x 3 + x + 1 ( 系 数 m o d 2 ) 2x^7+2x^6+2x^5+x^4+x^3+2x^2+x+1\equiv x^4+x^3+x+1(系数mod2) 2x7+2x6+2x5+x4+x3+2x2+x+1x4+x3+x+1(mod2)

立刻发现刚才"精锐的头部"那个 x 8 x^8 x8在和 m ( x ) m(x) m(x)的8次项的决斗中阵亡了,剩下的小弟都是7次方以下的项,无力与 m ( x ) m(x) m(x)抗衡,直接作为余数

即刚才的"战争"可以写为:
x 8 ≡ x 4 + x 3 + x + 1 m o d    m ( x ) & 系 数 m o d 2 其 中 m ( x ) = x 8 + x 4 + x 3 + x + 1 x^8\equiv x^4+x^3+x+1 \mod m(x)\&系数mod2\\ 其中m(x)=x^8+x^4+x^3+x+1 x8x4+x3+x+1modm(x)&mod2m(x)=x8+x4+x3+x+1
突然发现 x 8 m o d    m ( x ) = m ( x ) − x 8 = x 4 + x 3 + x + 1 x^8\mod m(x)=m(x)-x^8=x^4+x^3+x+1 x8modm(x)=m(x)x8=x4+x3+x+1

这是巧合吗?

这是系数mod2的必然结果,并且可以从8次推广到n次:

m ( x ) m(x) m(x)为n次多项式
x n m o d    m ( x ) = m ( x ) − x n ( 系 数 m o d 2 ) x^n\mod m(x)=m(x)-x^n(系数mod2) xnmodm(x)=m(x)xn(mod2)
x 8 x^8 x8独自面对 m ( x ) m(x) m(x),最终壮烈牺牲但是换回 x 4 + x 3 + x + 1 x^4+x^3+x+1 x4+x3+x+1颇有"将军百战死,壮士十年归"的感觉

在战争之前我们把"累赘的尾部 a 6 x 7 + a 5 x 6 + . . . + a 0 x a_6x^7+a_5x^6+...+a_0x a6x7+a5x6+...+a0x"留下不参战,原因是他们参战也会被敌人 m ( x ) m(x) m(x)直接劝返

现在我们知道了精锐的头部 x 8 x^8 x8和累赘的尾部 a 6 x 7 + a 5 x 6 + . . . + a 0 x a_6x^7+a_5x^6+...+a_0x a6x7+a5x6+...+a0x各自参战的结果了,此时可以总结一支部队 x × f ( x ) = x 8 + a 6 x 7 + a 5 x 6 + . . . + a 0 x x\times f(x)=x^8+a_6x^7+a_5x^6+...+a_0x x×f(x)=x8+a6x7+a5x6+...+a0x参战的结果了:
x × f ( x ) m o d    m ( x ) = [ m ( x ) − x 8 ] + a 6 x 7 + a 5 x 6 + . . . + a 0 x x\times f(x)\mod m(x)=[m(x)-x^8]+a_6x^7+a_5x^6+...+a_0x x×f(x)modm(x)=[m(x)x8]+a6x7+a5x6+...+a0x
比如当 f ( x ) = x 7 + x 4 + x 2 + x + 1 , m ( x ) = x 8 + x 4 + x 3 + x + 1 f(x)=x^7+x^4+x^2+x+1,m(x)=x^8+x^4+x^3+x+1 f(x)=x7+x4+x2+x+1,m(x)=x8+x4+x3+x+1
x × f ( x ) m o d    m ( x ) = ( x 8 + x 5 + x 3 + x 2 + x ) m o d    ( x 8 + x 4 + x 3 + x + 1 ) = [ x 4 + x 3 + x + 1 ] + [ x 5 + x 3 + x 2 + x ] = 011011 ⊕ 101110 = 110101 \begin{aligned} &x\times f(x)\mod m(x)\\ &=(x^8+x^5+x^3+x^2+x)\mod (x^8+x^4+x^3+x+1)\\ &=[x^4+x^3+x+1]+[x^5+x^3+x^2+x]\\ &=011011\oplus 101110\\ &=110101 \end{aligned} x×f(x)modm(x)=(x8+x5+x3+x2+x)mod(x8+x4+x3+x+1)=[x4+x3+x+1]+[x5+x3+x2+x]=011011101110=110101
到此我们知道 x × f ( x ) m o d    m ( x ) x\times f(x)\mod m(x) x×f(x)modm(x)如何计算了,

那么 x 2 × f ( x ) m o d    m ( x ) = x × ( x × f ( x ) m o d    m ( x ) ) m o d    m ( x ) x^2\times f(x)\mod m(x)=x\times (x\times f(x)\mod m(x))\mod m(x) x2×f(x)modm(x)=x×(x×f(x)modm(x))modm(x)

以此类推可以得到 x k × f ( x ) m o d    m ( x ) x^k\times f(x)\mod m(x) xk×f(x)modm(x)如何计算了

回到求 f ( x ) × g ( x ) m o d    m ( x ) f(x)\times g(x)\mod m(x) f(x)×g(x)modm(x)

不管你 g ( x ) g(x) g(x)长什么样,我先预处理出 f ( x ) × x m o d    x , f ( x ) × x 2 m o d    m ( x ) , f ( x ) × x k m o d    m ( x ) f(x)\times x\mod x,f(x)\times x^2\mod m(x),f(x)\times x^k\mod m(x) f(x)×xmodx,f(x)×x2modm(x),f(x)×xkmodm(x)等等情况

如果你 g ( x ) = 1 + x + x 2 g(x)=1+x+x^2 g(x)=1+x+x2,那么
f ( x ) × g ( x ) m o d    m ( x ) = f ( x ) × ( 1 + x + x 2 ) m o d    m ( x ) = ( f ( x ) + x × f ( x ) + x 2 × f ( x ) ) m o d    m ( x ) = f ( x ) + x × f ( x ) m o d    m ( x ) + x 2 × f ( x ) m o d    m ( x ) \begin{aligned} &f(x)\times g(x)\mod m(x)\\ &=f(x)\times (1+x+x^2)\mod m(x)\\ &=(f(x)+x\times f(x)+x^2\times f(x))\mod m(x)\\ &=f(x)+x\times f(x)\mod m(x)+x^2\times f(x)\mod m(x) \end{aligned} f(x)×g(x)modm(x)=f(x)×(1+x+x2)modm(x)=(f(x)+x×f(x)+x2×f(x))modm(x)=f(x)+x×f(x)modm(x)+x2×f(x)modm(x)
直接利用预处理得出的结果,然后计算加法直接用二进制异或

总结

到此我们构造出了 G F ( 2 n ) GF(2^n) GF(2n),即有 2 n 2^n 2n个元素的伽罗华域

怎么构造出的?由系数在 G F ( 2 ) GF(2) GF(2)上的多项式模一个 2 n 2^n 2n次的素多项式拓展出的

多项式和这 2 n 2^n 2n个数怎么产生联系?每一个多项式都对应一个二进制数

2 n 2^n 2n个数的加减乘除运算怎么定义的?还是通过多项式的运算得到的

下一步可以向AES加密算法进军了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灰球球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值