古典密码——代数密码

代数密码

美国电话电报公司的Gillbert Vernam在1917年为电报通信设计了一种非常方便的密码,后来被称为Vernam密码。Vernam密码奠定了序列密码的基础。
1.Vernam密码的明文、密钥、密文均用二元数字序列表示。
2.加密:把明文和密钥表示成二元序列按位模2相加即可
        在这里插入图片描述
其中i = 0,1,2,……,n-1

3.解密:只需要把密文和密钥的二元序列按位模2相加即可。
         在这里插入图片描述

在数学上,如果一个变换的正变换和逆变换相同,即 f= f-1,则称其为对合运算。
模2相加就是一种对合运算。
Vernam属于序列密码,它的一个突出优点是加密运算和解密运算相同,都是模2相加运算。因此Vennam密码有属于对合运算,加密算法 = 解密算法,工程实现工作量减少一半。
Vernam密码经不起已知明文攻击,这是因为:
      在这里插入图片描述
为了增强Vernam密码的强度,应当避免密钥重复使用,避免密钥本身包含重复。一种极端情况是:

  1. 密钥是真正的随机序列
  2. 密钥至少和明文一样长
  3. 一个密钥只使用一次

如果能做到这些,则密码就是绝对不可破译的了,这便是著名的“一次一密”密码。

小结

穷举攻击:抵御穷举攻击的最好方法是增大密钥空间
统计分析攻击:通过分析密文和明文的统计规律来破译密码(明文的统计特征尽可能的不带入密文)
数学分析攻击:通过数学求解的方法(坚实的数学基础和足够复杂的加密方法)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值