增量学习 ewc

在这里插入图片描述

关键挑战与解决方案
​灾难性遗忘(Catastrophic Forgetting)​

​问题:模型在新任务上优化时破坏旧知识(例如:训练识别鸟类后忘记如何识别猫)
​解决方法:
​弹性权重巩固(EWC)​:保护重要参数(通过Fisher信息矩阵量化参数重要性)
​知识蒸馏(Knowledge Distillation)​:强制新模型模仿旧模型的输出
​回放机制(Replay)​:存储部分旧数据或生成伪样本(如使用GAN)
​新旧知识平衡

​动态权重调整:根据任务相似性自动调节新旧任务的损失权重
​课程学习(Curriculum Learning)​:按难度渐进式引入新样本
​样本不均衡

​重采样技术:对低频类别过采样,高频类别欠采样
​解耦表征学习:分离共享特征和任务特异性特征
典型应用场景
​推荐系统:用户兴趣漂移时实时更新推荐策略
​自动驾驶:适应新地区交通规则/道路环境
​医疗诊断:整合新发现的疾病亚型或治疗案例
​物联网设备:资源受限的终端设备持续学习
​金融风控:动态应对新型欺诈手段

# 弹性权重巩固(EWC)实现核心
class EWC_Regularizer:
    def __init__(self, model, dataloader):
        self.fisher_matrix = {}
        # 计算Fisher信息矩阵
        for name, param in model.named_parameters():
            if param.requires_grad:
                grad_square = torch.square(param.grad)
                self.fisher_matrix[name] = grad_square.mean()

    def penalty(self, current_model):
        loss = 0
        for name, param in current_model.named_parameters():
            if name in self.fisher_matrix:
                # 惩罚重要参数的改变
                loss += torch.sum(self.fisher_matrix[name] * 
                                (param - self.original_params[name])**2)
        return loss

# 训练循环中加入EWC约束
for new_data in incremental_dataloader:
    outputs = model(new_data)
    ce_loss = cross_entropy(outputs, labels)
    ewc_loss = ewc_regularizer.penalty(model)  # EWC正则项
    total_loss = ce_loss + 0.1 * ewc_loss      # 平衡新旧知识
    optimizer.zero_grad()
    total_loss.backward()
    optimizer.step()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值