关键挑战与解决方案
灾难性遗忘(Catastrophic Forgetting)
问题:模型在新任务上优化时破坏旧知识(例如:训练识别鸟类后忘记如何识别猫)
解决方法:
弹性权重巩固(EWC):保护重要参数(通过Fisher信息矩阵量化参数重要性)
知识蒸馏(Knowledge Distillation):强制新模型模仿旧模型的输出
回放机制(Replay):存储部分旧数据或生成伪样本(如使用GAN)
新旧知识平衡
动态权重调整:根据任务相似性自动调节新旧任务的损失权重
课程学习(Curriculum Learning):按难度渐进式引入新样本
样本不均衡
重采样技术:对低频类别过采样,高频类别欠采样
解耦表征学习:分离共享特征和任务特异性特征
典型应用场景
推荐系统:用户兴趣漂移时实时更新推荐策略
自动驾驶:适应新地区交通规则/道路环境
医疗诊断:整合新发现的疾病亚型或治疗案例
物联网设备:资源受限的终端设备持续学习
金融风控:动态应对新型欺诈手段
# 弹性权重巩固(EWC)实现核心
class EWC_Regularizer:
def __init__(self, model, dataloader):
self.fisher_matrix = {}
# 计算Fisher信息矩阵
for name, param in model.named_parameters():
if param.requires_grad:
grad_square = torch.square(param.grad)
self.fisher_matrix[name] = grad_square.mean()
def penalty(self, current_model):
loss = 0
for name, param in current_model.named_parameters():
if name in self.fisher_matrix:
# 惩罚重要参数的改变
loss += torch.sum(self.fisher_matrix[name] *
(param - self.original_params[name])**2)
return loss
# 训练循环中加入EWC约束
for new_data in incremental_dataloader:
outputs = model(new_data)
ce_loss = cross_entropy(outputs, labels)
ewc_loss = ewc_regularizer.penalty(model) # EWC正则项
total_loss = ce_loss + 0.1 * ewc_loss # 平衡新旧知识
optimizer.zero_grad()
total_loss.backward()
optimizer.step()