回归公式推导

本文详细介绍了逻辑回归的概念,强调其作为分类方法的作用,特别是处理二分类问题。通过极大似然估计解释了最小二乘法,并探讨了过拟合的处理方法,包括增加数据量、正则化等。此外,还对比了线性回归和逻辑回归的差异,以及L1和L2正则化的应用和作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

上面写的字迹有点乱,重新公式梳理:
逻辑回归(Logistic Regression)是用于处理因变量为分类变量的回归问题,常见的是二分类或二项分布问题,也可以处理多分类问题,它实际上是属于一种分类方法。损失函数,就是衡量真实值和预测值之间差距的函数。所以,我们希望这个函数越小越好。在这里,最小损失是0。

最小二乘意义下的矩阵的逆求参数最优解

### Lasso 回归公式的数学推导 Lasso(Least Absolute Shrinkage and Selection Operator)是一种线性回归模型,其目标函数通过加入正则化项来减少过拟合并实现特征选择。以下是关于 Lasso 回归公式及其数学推导的详细介绍。 #### 定义与目标函数 Lasso 的核心在于最小化一个带惩罚项的目标函数。对于给定的数据集 \(X\) 和响应变量 \(y\),Lasso 的优化问题是: \[ \min_{\beta} \frac{1}{2n} \| y - X\beta \|^2_2 + \lambda \|\beta\|_1, \] 其中: - \(y\) 是观测值向量, - \(X\) 是输入矩阵, - \(\beta\) 是待估计的系数向量, - \(\lambda > 0\) 是控制正则化的超参数, - \(\|\beta\|_1 = \sum_{j=1}^{p} |\beta_j|\) 表示绝对值之和(即 L1 范数)。[^3] 此目标函数由两部分组成:残差平方和以及 L1 正则化项。前者衡量预测误差,后者用于约束模型复杂度。 --- #### 数学推导过程 ##### 1. 原始损失函数 原始的线性回归损失函数定义如下: \[ J(\beta) = \frac{1}{2n}\|y - X\beta\|^2_2. \] 展开该表达式可得: \[ J(\beta) = \frac{1}{2n}(y - X\beta)^T(y - X\beta). \] 进一步计算得到: \[ J(\beta) = \frac{1}{2n}[y^Ty - 2y^TX\beta + \beta^TX^TX\beta]. \] 这是标准的均方误差形式。 --- ##### 2. 添加 L1 正则化 为了引入稀疏性,在上述基础上增加 L1 正则化项,形成新的目标函数: \[ J'(\beta) = J(\beta) + \lambda \|\beta\|_1. \] 因此完整的 Lasso 目标函数变为: \[ J'(\beta) = \frac{1}{2n}[y^Ty - 2y^TX\beta + \beta^TX^TX\beta] + \lambda \sum_{j=1}^{p} |\beta_j|. \] 注意这里的第二项涉及绝对值运算,这使得求解变得困难。 --- ##### 3. 使用坐标下降法求解 由于存在非平滑的 L1 正则化项,通常采用 **坐标下降法** 或其他数值方法进行优化。具体步骤如下: - 对于每一个维度 \(j\) 更新对应的系数 \(\beta_j\); - 将其余维度固定不变。 更新规则可以表示为: \[ \beta_j := S(z_j, \lambda), \] 其中 \(S(x, \lambda)\) 是软阈值算子(Soft Thresholding Operator),定义为: \[ S(x, \lambda) = \begin{cases} x-\lambda & \text{if } x>\lambda \\ x+\lambda & \text{if } x<-\lambda \\ 0 & \text{otherwise}. \end{cases} \] 这一操作能够自动将某些不重要的特征系数设置为零,从而达到特征选择的效果。 --- ##### 4. 特殊情况下的闭式解 当数据满足特定条件时(如正交设计矩阵 \(X^TX=\mathbf{I}\)),可以通过解析方式获得 Lasso 解决方案。此时每维独立处理,最终结果简化为: \[ \hat{\beta}_j = S((X^Ty)_j / n, \lambda/n). \] 这种情况下无需迭代即可快速得出答案。 --- ### 总结 综上所述,Lasso 回归的核心思想是在传统最小二乘法的基础上加入了基于权重大小的比例罚金机制——即所谓的 L1 正则化。这种方法不仅有助于降低模型复杂程度,还能有效筛选重要变量。然而实际应用中往往依赖高效算法完成大规模问题中的精确估算工作 [^4]. ```python import numpy as np from sklearn.linear_model import Lasso # Example usage of Lasso in Python X = np.array([[1, 2], [3, 4]]) y = np.array([1, 2]) model = Lasso(alpha=0.1) model.fit(X, y) print(model.coef_) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值