计算电磁学:FDFD算法总结

FDFD(Finite Difference Frequency Domain)在Yee格子上使用有限差分求解频域Maxwell方程组。本文通过FDFP差分方程组的推导来阐述FDFP的原理。

注1:限于研究水平,分析难免不当,欢迎批评指正。

注2:文章内容会不定期更新。

0、预修

0.1 卷积分

对于函数f_{1}\left ( t \right )f_{2}\left ( t \right ),则\int_{-\infty }^{+\infty}f_{1}\left ( \tau \right )f_{2}\left ( t-\tau \right )dt称为函数函数f_{1}\left ( t \right )f_{2}\left ( t \right )的卷积,记作f_{1}\left ( t \right )*f_{2}\left ( t \right )

交换律:f_{1}\left ( t \right )*f_{2}\left ( t \right )=f_{2}\left ( t \right )*f_{1}\left ( t \right )

0.2 Fourier变换

Fourier积分定理:若函数f\left ( t \right )\left ( -\infty ,+\infty \right )上满足下列条件,(1). f\left ( t \right )在任一有限区间满足Dirichlet条件 ;(2). f\left ( t \right )在无限区间\left ( -\infty ,+\infty \right )上绝对可积分(即\int_{-\infty }^{+\infty }\left |f\left ( t \right ) \right |dt < \infty),则有

f\left ( t \right )=\int_{-\infty }^{+\infty }\int_{-\infty }^{+\infty }f\left ( \tau \right )e^{-j\omega\tau}d\tau e^{-j\omega t}d\omega

F\left ( \omega \right )=\mathcal{F}\left ( f\left ( t \right ) \right ) =\int_{-\infty }^{+\infty }f\left ( t \right )e^{-j\omega t}dt为函数f\left ( t \right )的Fourier变换,对应的Fourier逆变换为f\left ( t\right )=\mathcal{F}^{-1}\left [ F\left ( \omega \right )\right ] =\frac{1}{2\pi }\int_{-\infty }^{+\infty }F\left ( \omega \right )e^{j\omega t}d\omega

微分性质:若\left | t \right |\rightarrow \infty时,\left | f\left (t \right )\right |\rightarrow \infty,则有\mathcal{F}\left ( {f}'\left ( t \right ) \right )=j\omega \mathcal{F}\left ( f\left ( t \right ) \right )

0.3 Laplace变换

若函数f\left ( t \right )\left [ 0,+\infty \right )时有定义,而且积分\int_{0}^{+\infty }f\left ( t \right )e^{-st}dt在复数s=\beta +j\omega的某一域内存在,则记,

F\left ( s \right )=\mathcal{L}\left ( f\left ( t \right ) \right )=\int_{0}^{+\infty }f\left ( t \right )e^{-st}dt为函数f\left ( t \right )的Laplace变换,

f\left ( t \right )=\mathcal{L}^{-1}\left ( F\left ( s \right ) \right )=\frac{1}{2\pi j}\int_{\beta -j\infty }^{\beta +j\infty}F\left ( s \right )e^{st}dsF\left ( s \right )的Laplace逆变换。

Laplace变换存在的充分条件:若函数f\left ( t \right )t\geq 0时满足以下条件,(1) 在t\geq 0任一有限区域分段连续;(2) 当t\rightarrow +\infty时,存在常数M>0c\geq 0,使得\left | f\left ( t \right ) \right |<Me^{ct}, 则f\left ( t \right )的Laplace变换\int_{0}^{+\infty }f\left ( t \right )e^{-st}dt在半平面Re\left ( s \right )>c上一定存在,右端积分在Re\left ( s \right )\geqslant c_{1}>c绝对收敛且一致收敛,并且在半平面Re\left ( s \right )>c内,F\left ( s \right )为解析解。

微分性质:若F\left ( s \right )=\mathcal{L}\left ( f\left ( t \right ) \right ),则有\mathcal{L}\left ( {f}'\left ( t \right ) \right )=sF\left ( s \right )-F\left ( 0 \right )

积分性质:若F\left ( s \right )=\mathcal{L}\left ( f\left ( t \right ) \right ),则有\mathcal{L}\left ( \int_{0}^{t}f\left ( t \right ) dt\right )=\frac{1}{s}F\left ( s \right )

一、数学模型

对于微分形式的Maxwell方程组,有

\left\{\begin{matrix} \nabla \cdot \mathbf{D}=\rho\\ \nabla\cdot \mathbf{B}=0\\ \nabla\times \mathbf{H}=\boldsymbol{J}+\frac{\partial \boldsymbol{D}}{\partial t}\\ \nabla\times \mathbf{E}=-\frac{\partial \boldsymbol{B}}{\partial t}-\boldsymbol{M} \end{matrix}\right.

依据Fourier逆变换,可得复数形式的Maxwell方程组,

\left\{\begin{matrix} \nabla \cdot \mathbf{D}=\rho\\ \nabla\cdot \mathbf{B}=0\\ \nabla\times \mathbf{H}=\boldsymbol{J}+j\omega\boldsymbol{D}\\ \nabla\times \mathbf{E}=-j\omega\boldsymbol{B}-\boldsymbol{M} \end{matrix}\right.

对于各向异性介质,则有

\left\{\begin{matrix} \nabla \cdot \mathbf{D}=\rho\\ \nabla\cdot \mathbf{B}=0\\ \nabla\times \mathbf{H}=\boldsymbol{J}+j\omega\boldsymbol{\epsilon}\cdot \boldsymbol{E}\\ \nabla\times \mathbf{E}=-j\omega\boldsymbol{\mu}\cdot \boldsymbol{H}-\boldsymbol{M} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} \boldsymbol{\mu}^{-1}\nabla^{2} \boldsymbol{E}+\omega ^{2}\boldsymbol{\epsilon}\cdot\boldsymbol{E}=\nabla\times \boldsymbol{\mu}^{-1}\cdot \nabla\times\boldsymbol{E}+\boldsymbol{\mu}^{-1}\nabla\nabla\cdot \boldsymbol{E}+j\omega\boldsymbol{J}+\nabla\times\boldsymbol{\mu}^{-1}\cdot \boldsymbol{M}\\ \boldsymbol{\epsilon}^{-1}\nabla^{2} \boldsymbol{H}+\omega ^{2}\boldsymbol{\mu}\cdot\boldsymbol{H}=\nabla\times \boldsymbol{\epsilon}^{-1}\cdot \nabla\times\boldsymbol{H}+\boldsymbol{\epsilon}^{-1}\nabla\nabla\cdot \boldsymbol{H}+j\omega\boldsymbol{M}-\nabla\times\boldsymbol{\epsilon}^{-1}\cdot \boldsymbol{J}\end{matrix}\right.

不考虑电流密度\boldsymbol{J}与磁流密度\boldsymbol{M},在均匀各向同性介质中,有

\left\{\begin{matrix}\nabla\times \mathbf{H}=j\omega \epsilon \boldsymbol{E} \\ \nabla\times\mathbf{E}=-j\omega \mu \boldsymbol{H} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} \nabla^{2}\boldsymbol{H}+\omega ^{2}\epsilon\mu\boldsymbol{H}=0\\ \nabla^{2}\boldsymbol{E}+\omega ^{2}\epsilon\mu\boldsymbol{E}=\frac{\nabla\rho }{\epsilon}\end{matrix}\right.

在笛卡尔直角坐标系下,有

\left\{\begin{matrix} \frac{\partial H_{z}}{\partial y}-\frac{\partial H_{y}}{\partial z}=j\omega \epsilon E_{x}\\ \frac{\partial H_{x}}{\partial z}-\frac{\partial H_{z}}{\partial x}=j\omega \epsilon E_{y}\\ \frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}=j\omega \epsilon E_{z}\end{matrix}\right.            \left\{\begin{matrix} \frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=-j\omega \mu H_{x}\\ \frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=-j\omega \mu H_{y}\\ \frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=-j\omega \mu H_{z}\end{matrix}\right.

二、数值模型:控制方程的空间离散

FDFD算法也采用Yee格子在空间上进行离散。在Yee格子中,电场分量放置到Yee单元各棱的中间,方向平行于各棱;磁场分量放置到Yee单元各面中心,方向平行于各面法线。

Yee Cell

\left\{\begin{matrix} \frac{H_{z}\left (i+\frac{1}{2},j+\frac{1}{2},k \right )-H_{z}\left (i+\frac{1}{2},j-\frac{1}{2},k \right )}{\Delta y}-\frac{H_{y}\left (i+\frac{1}{2},j,k+\frac{1}{2} \right )-H_{y}\left (i+\frac{1}{2},j,k-\frac{1}{2} \right )}{\Delta z}=j\omega \epsilon E_{x}\left ( i+\frac{1}{2},j,k \right )\\ \frac{H_{x}\left (i,j+\frac{1}{2},k+\frac{1}{2} \right )-H_{x}\left (i,j+\frac{1}{2},k-\frac{1}{2} \right )}{\Delta z}-\frac{H_{z}\left (i+\frac{1}{2},j+\frac{1}{2},k \right )-H_{z}\left (i-\frac{1}{2},j+\frac{1}{2},k \right )}{\Delta x}=j\omega \epsilon E_{y}\left ( i,j+\frac{1}{2},k \right )\\ \frac{H_{y}\left (i+\frac{1}{2},j,k+\frac{1}{2} \right )-H_{y}\left (i-\frac{1}{2},j,k+\frac{1}{2} \right )}{\Delta x}-\frac{H_{x}\left (i,j+\frac{1}{2},k+\frac{1}{2} \right )-H_{x}\left (i,j-\frac{1}{2},k+\frac{1}{2} \right )}{\Delta y}=j\omega \epsilon E_{z}\left ( i,j,k+\frac{1}{2} \right ) \end{matrix}\right.

\left\{\begin{matrix} \frac{E_{z}\left (i,j+1,k+\frac{1}{2} \right )-E_{z}\left (i,j,k+\frac{1}{2} \right )}{\Delta y}-\frac{E_{y}\left (i,j+\frac{1}{2},k+1 \right )-E_{y}\left (i,j+\frac{1}{2},k \right )}{\Delta z}=-j\omega \mu H_{x}\left ( i,j+\frac{1}{2},k+\frac{1}{2} \right )\\ \frac{E_{x}\left (i+\frac{1}{2},j,k+1 \right )-E_{x}\left (i+\frac{1}{2},j,k \right )}{\Delta z}-\frac{E_{z}\left (i+1,j,k+\frac{1}{2}\right )-E_{z}\left (i,j,k+\frac{1}{2} \right )}{\Delta x}=-j\omega \mu H_{y}\left ( i+\frac{1}{2},j,k+\frac{1}{2} \right )\\ \frac{E_{y}\left (i+1,j+\frac{1}{2},k \right )-E_{y}\left (i,j+\frac{1}{2},k \right )}{\Delta x}-\frac{E_{x}\left (i+\frac{1}{2},j+1,k\right )-E_{x}\left (i+\frac{1}{2},j,k \right )}{\Delta y}=-j\omega \mu H_{z}\left ( i+\frac{1}{2},j+\frac{1}{2},k \right )\end{matrix}\right.

n_{x}n_{y}n_{z}分别表示xyz方向上的Yee格子数目,考虑将上述差分方程组写成矩阵方程组\boldsymbol{A}\boldsymbol{X}形式,则有,

n=kn_{x}n_{y}+jn_{x}+i

A\left ( 6n,6n+4-6n_{x}n_{y} \right )=-\frac{1}{\Delta z}A\left ( 6n,6n+5-6n_{x} \right )=\frac{1}{\Delta y}A\left ( 6n,6n \right )=j\omega \epsilonA\left ( 6n,6n+1 \right )=0A\left ( 6n,6n+2 \right )=0A\left ( 6n,6n+3 \right )=0A\left ( 6n,6n+4 \right )=\frac{1}{\Delta z}A\left ( 6n,6n+5 \right )=-\frac{1}{\Delta y}

A\left ( 6n+1,6n+3-6n_{x}n_{y} \right )=\frac{1}{\Delta z}A\left ( 6n+1,6n-1\right )=-\frac{1}{\Delta x}A\left ( 6n+1,6n \right )=0A\left ( 6n+1,6n+1 \right )=j\omega \epsilonA\left ( 6n+1,6n+2 \right )=0A\left ( 6n+1,6n+3 \right )=-\frac{1}{\Delta z}A\left ( 6n+1,6n+5 \right )=\frac{1}{\Delta x}

A\left ( 6n+2,6n+3-6n_{x} \right )=-\frac{1}{\Delta y}A\left ( 6n+2,6n-2 \right )=\frac{1}{\Delta x}A\left ( 6n+2,6n \right )=0A\left ( 6n+2,6n+1 \right )=0A\left ( 6n+2,6n+2 \right )=j\omega \epsilonA\left ( 6n+2,6n+3 \right )=\frac{1}{\Delta y}A\left ( 6n+2,6n+4 \right )=-\frac{1}{\Delta x}

A\left ( 6n+3,6n \right )=0A\left ( 6n+3,6n+1 \right )=\frac{1}{\Delta z}A\left ( 6n+3,6n+2 \right )=\frac{1}{\Delta y}A\left ( 6n+3,6n+3 \right )=j\omega \muA\left ( 6n+3,6n+4\right )=0A\left ( 6n+3,6n+5\right )=0A\left ( 6n+3,6n+1+6n_{x} \right )=\frac{1}{\Delta y}A\left ( 6n+3,6n+1+6n_{x}n_{y} \right )=-\frac{1}{\Delta z}

A\left ( 6n+4,6n\right )=-\frac{1}{\Delta z}A\left ( 6n+4,6n+2 \right )=\frac{1}{\Delta x}A\left ( 6n+4,6n+3 \right )=0A\left ( 6n+4,6n+4 \right )=j\omega \muA\left ( 6n+4,6n+5 \right )=0A\left ( 6n+4,6n+8 \right )=-\frac{1}{\Delta x}A\left ( 6n+4,6n+6n_{x}n_{y}\right )=\frac{1}{\Delta z}

A\left ( 6n+5,6n \right )=\frac{1}{\Delta y}A\left ( 6n+5,6n+2\right )=-\frac{1}{\Delta x}A\left ( 6n+5,6n+3 \right )=0A\left ( 6n+5,6n+4 \right )=0A\left ( 6n+5,6n+5 \right )=j\omega \muA\left ( 6n+5,6n+8\right )=\frac{1}{\Delta x}A\left ( 6n+5,6n+6n_{y} \right )=-\frac{1}{\Delta y}

\boldsymbol{X}\left ( 6n \right )=E_{x}\left ( i+\frac{1}{2},j,k \right )

\boldsymbol{X}\left ( 6n+1 \right )=E_{y}\left ( i,j+\frac{1}{2},k \right )

\boldsymbol{X}\left ( 6n+2 \right )=E_{z}\left ( i,j,k+\frac{1}{2} \right )

\boldsymbol{X}\left ( 6n+3 \right )= H_{x}\left ( i,j+\frac{1}{2},k+\frac{1}{2} \right )

\boldsymbol{X}\left ( 6n+4 \right )= H_{y}\left ( i+\frac{1}{2},j,k+\frac{1}{2} \right )

\boldsymbol{X}\left ( 6n+5 \right )= H_{z}\left ( i,j+\frac{1}{2},k+\frac{1}{2} \right )

三、数值模型:边界条件的空间离散

参考资料

  • 王长清. 现代计算电磁学基础. 2005.
  • 王元明. 数学物理方程与特殊函数. 
  • 陆庆乐. 复变函数.
  • 张元林. 积分变换.
  • 老大中. 变分法基础.

网络资料

计算电磁学:FDTD算法总结https://blog.csdn.net/qq_26221775/article/details/136264673?spm=1001.2014.3001.5501

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值