FDFD(Finite Difference Frequency Domain)在Yee格子上使用有限差分求解频域Maxwell方程组。本文通过FDFP差分方程组的推导来阐述FDFP的原理。
注1:限于研究水平,分析难免不当,欢迎批评指正。
注2:文章内容会不定期更新。
0、预修
0.1 卷积分
对于函数、
,则
称为函数函数
、
的卷积,记作
。
交换律:
0.2 Fourier变换
Fourier积分定理:若函数在
上满足下列条件,(1).
在任一有限区间满足Dirichlet条件 ;(2).
在无限区间
上绝对可积分(即
),则有
记为函数
的Fourier变换,对应的Fourier逆变换为
。
微分性质:若时,
,则有
0.3 Laplace变换
若函数在
时有定义,而且积分
在复数
的某一域内存在,则记,
为函数
的Laplace变换,
为
的Laplace逆变换。
Laplace变换存在的充分条件:若函数在
时满足以下条件,(1) 在
任一有限区域分段连续;(2) 当
时,存在常数
及
,使得
, 则
的Laplace变换
在半平面
上一定存在,右端积分在
绝对收敛且一致收敛,并且在半平面
内,
为解析解。
微分性质:若,则有
。
积分性质:若,则有
一、数学模型
对于微分形式的Maxwell方程组,有
依据Fourier逆变换,可得复数形式的Maxwell方程组,
对于各向异性介质,则有
不考虑电流密度与磁流密度
,在均匀各向同性介质中,有
在笛卡尔直角坐标系下,有
二、数值模型:控制方程的空间离散
FDFD算法也采用Yee格子在空间上进行离散。在Yee格子中,电场分量放置到Yee单元各棱的中间,方向平行于各棱;磁场分量放置到Yee单元各面中心,方向平行于各面法线。

设、
、
分别表示
、
、
方向上的Yee格子数目,考虑将上述差分方程组写成矩阵方程组
形式,则有,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
三、数值模型:边界条件的空间离散
参考资料
- 王长清. 现代计算电磁学基础. 2005.
- 王元明. 数学物理方程与特殊函数.
- 陆庆乐. 复变函数.
- 张元林. 积分变换.
- 老大中. 变分法基础.
网络资料
计算电磁学:FDTD算法总结https://blog.csdn.net/qq_26221775/article/details/136264673?spm=1001.2014.3001.5501