前段时间有点其他事情,好像停了蛮长时间了,接下来继续吧~
这篇会开始介绍FDFD( Finite Difference Frequency Domain)算法和FDTD( Finite Difference Frequency Domain算法,都是很常用的算法.其中FDTD是CST用的算法.
两种算法都是,都是对麦克斯韦方程组进行基于Yee元胞的差分离散. 两种算法的空间离散方式相同但FDFD需要在频域进行计算,存在矩阵求逆的问题,更多的是用来求解模式本征场
课件上是先从FDFD开始介绍的,所以这边也会从FDFD开始.
先回顾下之前一直在用的公式:
这个是差分矩阵形式的Maxwell方程组(归一化后)

还有就是布洛赫定理:

在正式开始讲FDFD前,需要对之前所讲的边界条件做一些修正.
需要修正的是"周期性结构的边界条件" 不需要修正Dirichlet boundary condition"
之前介绍周期性边界条件如下图:

我们认为E6=E1,从幅度上来说,这个是没有问题的.但我们忽略了传输会发生相位改变,如果直接用这个结构的话,会造成波在周期型材料中接出来的结果是不连续的,所以要做下修正

具体修正方法如下: E6就是多加了一个相位按照距离改变的传播项

在FDFD分析中,周期性结构边界条件修正为如下:

接下来开始正式讲解FDFD:
还是从差分形式的Maxwell方程开始, 把方程组写成矩阵形式如下:

做一些整理,得到如下很简单的形式:

可以预见的是A是一个超级复杂的矩阵,课程是有做估算:
如果是直接运算的话,基本上一般的计算机的内存空间肯定是不够的,但正如下图所示的,其实参与运算的矩阵都是低密度矩阵,所以可以做处理(具体怎么处理的话 这部分我还没看到ORZ~)

接下来看下矩阵A是什么:
首先一般分析波导等问题时,我们会把三维问题降为二维问题(把波传输的方向定义为z方向,按照布洛赫定理,我们一般只会看在x-y plane上电场和磁场分布,为了简化问题,认为Dz=0)
然后Maxwell方程可以分为下面2组:

然后做下整理得到AE的值如下:

同理可以得到AH的值:

接下来看下这个方程:
可以得到一个travial solution:
这个解表示没有任何信号源(情况下 这个很合理,但没什么用...
接下来去看下如何计算有信号源情况下电磁场:
首先,我们把整个需要分析的区域划分为2块: total field 和scattered field .
total field:源信号和反射信号组在一起的场区;
scattered field: 只有反射信号的区域,如下图:

特别需要注意:在两个场的分界面那边的行是需要特别注意的行(就是边界处).
先定义一个源信号如下图

如果整个求解区域都是均匀介质和PML,那么在反射区域就不会有任何信号,如下图

如果求解区域有两种材料组成,如下图,可以得到如下的场型图:

FDM求解的是矩阵,所以先定义一个区分total field和scattered field的矩阵Q

然后需要对边界处的场做一些修正

今天先写到这里 下一篇会对上图做下展开解释.