欧几里得算法相关

本文详细介绍了欧几里得算法的原理和证明过程,并通过实例展示了如何计算最大公约数。此外,还探讨了扩展欧几里得算法,说明了如何求解整数对x,y使得gcd(a, b)=ax+by,并阐述了乘法逆元的概念及其求解方法。" 4178204,582645,COM类厂的原理与实现,"['COM', '类厂', '接口实现', '组件创建', 'DLL', '注册表']
摘要由CSDN通过智能技术生成

欧几里得算法

定理:两个整数的最大公约数等于其中较小的那个数和两数的相除余数的最大公约数。最大公约数(greatest common divisor)缩写为gcd。

证明
a / b = k …… r
即证明gcd(a,b) = gcd (b ,r)。
1. 令 c = gcd( a ,b) ,则a = mc; b = nc ;m , n 互素,否则 c 就不是最大公约数。m,n 为整数。
2. 余数 r = a - kb = (m - kn) c , 则 c 也是 r 的因子。
3. 接下来证明 c = gcd (b,r),即证明(m - kn)与 n 互素。假设(m - kn)与 n 不互素,设 m - kn = xd 、n = yd,d!= 1那么 m = xd + kn = xd + kyd = ( x + ky )d ,则有gcd(m ,n)= d,与 m 、n互素矛盾,则假设不成立,即证得(m - kn)与 n 互素 ——》c = gcd (b,r)—–》gcd(a,b) = gcd (b ,r)。证毕。

举例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值