论文链接:https://arxiv.org/pdf/1903.06048.pdf
解决了训练生成高分辨率图像时不稳定的问题。
此论文发与2019.03.22,生成效果还不错。先上图:
Abstract
GAN成功的同时,有难点:训练不稳定。
一个原因是,训练过程中学习的不平衡,导致梯度在经过判别器传到生成器时很快变得没啥信息量。
我们提出MSG-GAN,用一个简单且有效的技术去解决这个问题,使得生成多尺度图片有了稳定的提升。
我们提出了数学MSG-GAN框架的非常直观的实现,该框架在判别器计算中使用串联操作。
我们在CIFAR10和Oxford102flower数据集上验证,并将其与其他多尺度合成技术进行了比较。
此外,我们还提供了有关CelebA-HQ数据集的实验细节,用于合成1024 x 1024高分辨率图像。
Introduction
GAN可优秀了……balabala。但有两个问题(1)模型崩塌;(2)训练不稳定。
当生成器网络只能抓住数据分布的局部方差特征时,就会产生模型崩塌问题。
不稳定的一个理论是,生成器(G)并不是在最小化真实数据和生