MSG-GAN

MSG-GAN是一种解决训练生成高分辨率图像时不稳定性的方法,通过多尺度梯度在判别器中进行计算,提高了生成器的训练稳定性。论文在CIFAR10、Oxford102flower和CelebA-HQ数据集上展示了稳定生成高质量图像的能力,无需超参数调整。
摘要由CSDN通过智能技术生成

论文链接:https://arxiv.org/pdf/1903.06048.pdf

解决了训练生成高分辨率图像时不稳定的问题。

此论文发与2019.03.22,生成效果还不错。先上图:

Abstract

GAN成功的同时,有难点:训练不稳定。

一个原因是,训练过程中学习的不平衡,导致梯度在经过判别器传到生成器时很快变得没啥信息量。

我们提出MSG-GAN,用一个简单且有效的技术去解决这个问题,使得生成多尺度图片有了稳定的提升。

我们提出了数学MSG-GAN框架的非常直观的实现,该框架在判别器计算中使用串联操作。

我们在CIFAR10和Oxford102flower数据集上验证,并将其与其他多尺度合成技术进行了比较。

此外,我们还提供了有关CelebA-HQ数据集的实验细节,用于合成1024 x 1024高分辨率图像。

Introduction

GAN可优秀了……balabala。但有两个问题(1)模型崩塌;(2)训练不稳定。

当生成器网络只能抓住数据分布的局部方差特征时,就会产生模型崩塌问题。

不稳定的一个理论是,生成器(G)并不是在最小化真实数据和生

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值