在用检测做工业质检的过程中,合格的产品有非常多,但不合格产品量少且形态各异。为了增强数据集,就需要生成大量不合格产品的图片。具体地,我得生成有瑕疵的磁材。此为背景。
本来有两个任务可选,其中一个就是我研究的用GAN生成,所以毫不犹豫地选了这个(另一个忘了)。
老大说,这个任务不着急,让我自己觉着怎么有意思怎么来。重要的是要好玩~自己玩儿着开心~(工作真清闲)。可以尝试多个网络以后,把它写的模块化,方便用。我们一切都目的都是为了懒(非常赞同)。
所以呢,为了懒,我打算先找个pix2pix跑跑看看效果。然后再基于这个模块框架往里加别的模型就好啦。
目前为止就只有pix2pix、cycleGAN(对本项目没啥用)、non-stationary-texture GAN(今天刚看懂加进去调通)。为了不耗费我写博客的热情,就直接从non-stationary-texture GAN 开始写啦。
1. pix2pix
略
2. Non-stationary-texture GAN
目前,生成平稳纹理的模型已经很多了,但是自然界中存在很多非平稳的纹理,生成这些纹理的问题还没解决。这篇文章提出了一种非平稳纹理生成模型。一旦训练完毕,输入一张纹理图,模型就可以将其尺寸扩大,延伸其纹理(如下图)。目前,现存的模型还没有比这篇文章效果好的。(文章发表于2018年8月)