训练集、验证集、测试集!YOLO系列标签数量统计!

文章内容:使用Python编写函数,遍历txt文件,统计COCO128数据集中train、val和test标签文件中每个类别的数量。
摘要由CSDN通过智能技术生成

统计txt标签格式中每个类别的数量。

# 计算txt标签格式每个类别的数量
import os

def get_every_class_num(txt_path):
    # 需修改,根据自己的类别,注意一一对应
    class_categories = ['class1', 'class2']
    class_num = len(class_categories)  # 样本类别数
    class_list = [i for i in range(class_num)]
    class_num_list = [0 for i in range(class_num)]
    labels_list = os.listdir(txt_path)
    for i in labels_list:
        file_path = os.path.join(txt_path, i)
        file = open(file_path, 'r')  # 打开文件
        file_data = file.readlines()  # 读取所有行
        for every_row in file_data:
            class_val = every_row.split(' ')[0]
            class_ind = class_list.index(int(class_val))
            class_num_list[class_ind] += 1
        file.close()
    # 输出每一类的数量以及总数
    result = dict(zip(class_categories, class_num_list))
    for name, num in result.items():
        print(name, ":", num)
    print("-----------------------------------")
    print('total:', sum(class_num_list))


if __name__ == '__main__':
    # 需修改,txt文件所在路径【以下按照不同数据集进行统计】
    train_txt_path = './coco128/train/labels'
    print("训练集train的类别数如下:")
    get_every_class_num(train_txt_path)
    
    val_txt_path = './coco128/val/labels'
    print("验证集val的类别数如下:")
    get_every_class_num(txt_path)
    
    test_txt_path = './coco128/test/labels'
    print("测试集test的类别数如下:")
    get_every_class_num(txt_path)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值