量化选股就是利用数量化的方法选择股票组合,期望该股票组合能够获得超越基准收益率的投资行为。量化选股策略总的来说可以分为两类:第一类是基本面选股;第二类是市场行为选股。
本章中基本面选股介绍了多因子模型、风格轮动模型和行业轮动模型;市场行为选股介绍了资金流模型、动量反转模型、一致预期模型、趋势追踪模型和筹码选股模型。
多因子选股模型基本原理是采用一系列的因子作为选股标准,满足这些因子的股票则被买入,不满足的则卖出。多因子模型相对来说比较稳定,因为在不同的市场条件下,总有一些因子会发挥作用。
风格轮动选股模型是利用市场的风格特征进行投资,比如有时候市场偏好于小盘股,有时候偏好于大盘股,如果是在风格转换的初期介入,则可以获取较大的超额收益。
行业轮动与风格轮动类似,由于经济周期的原因,总有一些行业先启动,有的行业跟随。在经济周期过程中,依次对这些轮动的行业进行配置,则比买入持有策略有更好的效果。
资金流选股的基本思想是利用资金的流向来判断股票的涨跌,如果资金流入,则股票价格应该上涨;如果资金流出,则股票价格应该下跌。所以将资金流入流出情况编成指标,则可利用该指标来判断在未来一段时间股票价格的涨跌情况。
动量反转模型是指股票的强弱变化情况,过去一段时间强势的股票在未来一段时间继续保持强势,过去一段时间弱势的股票在未来一段时间继续保持弱势,这叫做动量效应。过去一段时间强势的股票在未来一段时间会走弱,过去一段时间弱势的股票在未来一段时间会走强,这叫做反转效应。如果判断动量效应会持续,则应该买入强势股;如果判断会出现反转效应,则应该买入弱势股。
一致性预期是指市场上的投资者可能会对某些信息产生一致的看法。比如大多数分析师看好某只股票,可能这只股票的价格在未来一段时间会上涨;如果大多数分析师看空某只股票,可能这只股票的价格在未来一段时间会下跌。一致性预测策略就是利用大多数分析师的看法来进行股票买卖的操作。
趋势追踪属于图形交易的一种,就是当股价出现上涨趋势的时候,则追涨买入;当股价出现下跌趋势的时候,则杀跌卖出,其本质上是一种追涨杀跌的策略。判断趋势的指标有很多种,包括MA、EMA、MACD等其中最简单也是最有效的是均线策略。
筹码选股是另外一种市场行为策略,其基本思想是:如果主力资金要拉升一只股票,则会慢慢收集筹码;如果主力资金要卖出一只股票,则会慢慢分派筹码。所以根据筹码的分布和变动情况,就可以预测股票价格未来是上涨还是下跌。
有关量化选股业绩评价要从两方面来考虑:一个是收益率,另一个是风险指数(最大回撤)。量化选股需要考虑的是在承担多大的风险情况下的收益率情况(夏普比)
夏普比率衡量基金的风险收益比,即每承受一单位总风险,可以相较无风险利率产生多少超额收益。因此,夏普比率越大,代表基金的收益风险表现越好。夏普比率 =(基金年化收益率 - 无风险利率) / 基金年化波动率。举例来说,如果基金A的夏普比率为0.5,而同类型基金的平均夏普比率为0.2,则意味着基金A的风险收益表现优于同类型基金的平均水平。
多因子模型
在前面我们已经讲过一次多因子模型,这回我们再深入学习一下这个策略。
市场上的投资者,不管是价值投资者,还是投机者,或者短线交易者,都会根据某些因子来判断股票的涨跌。当有一群交易者同时采用某个因子的时候,就会造成该因子有效。例如,当很多投资者认为低PE的价值型股票是好的投资标的时,他们纷纷买入低PE的股票,会使得该股票价格出现上涨,或者超越市场。这样就使得低PE这个因子的有效性得以体现,这就是一个自我证实的过程。本节的多因子模型就是要研究市场上哪些因子对最终收益率的作用比较大,他们在不同市场阶段的