小波变换教程(九)

小波变换网文精粹:小波变换教程(九)

原文:ROBI POLIKAR. THE ENGINEER'S ULTIMATE GUIDE TO WAVELET ANALYSIS:The Wavelet Tutorial

网址:http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.html

译文转自:http://blog.163.com/renfengyuee@126/blog/static/359431362010911852159/

九、小波变换基础:短时傅立叶变换(二)

        下面这幅图有助于你更好的理解这一点:

                  

                                                                                 图2.7

        彩色的类似高斯函数的是窗函数。t=t1’时刻的窗为红色,t=t2’时刻的窗为蓝色,t=t3’ 的窗为绿色。这些都是对不同时刻的不同的傅立叶变换的响应。因此,我们就得到了信号的一个时频表示(TFR)。

        可能理解这一点最好的方式是举例子。首先,因为我们的变换是对时间和频率的函数(不像傅立叶变换,仅仅是对频率的函数),它是二维的(如果加上幅度则是三维)。以下图所示的非平稳信号为例:

                  

                                                                             图 2.8

        在这个信号中,在不同时刻有四个频率分量。0-250ms内信号的频率为300Hz,其余每个250ms的间隔的信号频率分别为200Hz,100Hz和50Hz。很明显,这是一个非平稳信号,让我们看一看它的短时傅立叶变换:

                  

                                                                                    图 2.9

        正如所期望的,这个二维图像(加上幅度则为三维),x和y轴分别代表时间和频率。忽略图中坐标轴的个数,因为结果被归一化处理了,我们现在对这些不感兴趣。只是查看时频表示图的形状。

        首先,图像以频率坐标轴的中线为轴对称。还记得吗,信号的傅立叶变换也是对称的,虽然没有画出来。因为短时傅立叶变换只不过是傅立叶变换的一个加窗版本,那么就不要惊讶于短时傅立叶变换结果也是对称的。对称部分对应负的频率,这时一个很奇怪的概念,也很难理解,幸运的是,它并不重要。这幅图足够说明短时傅立叶变换和傅立叶变换都是对称的。

        前面的四个尖峰才是我们要关注的。注意到四个尖峰分别是对四个频率分量的响应。还要注意到,不像傅立叶变换,这四个尖峰在时间轴上位于不同的位置。原始信号的四个频率分量也都出现在不同的时间段内。

        现在我们有了信号的一个时频表示。我们不仅知道信号中都有什么频率分量,还知道各自出现的时刻。

        这相当伟大,不是吗?

        不过,也不能全这么说!

        你可能迷惑了,既然短时傅立叶变换给出了信号的时频表示,为什么我们还需要小波变换?上面所举的例子中并没有明显体现出短时傅立叶变换的问题。当然,要举比较典型的例子才能更好的解释概念嘛。

        短时傅立叶变换的问题是它的解又会归结到海森堡测不准原理上。这个原理最初是应用在移动粒子的动量和位置的测量上,也可以被用在信号的时频分析上。简单的说,这个原理揭示了我们不能获取信号绝对精确的时频表示。举例来说,我们不知道在某个瞬间哪个频率分量存在。我们知道的是在一个时间段内某个频带的分量存在,这是一个有关分辨率的问题。

        短时傅立叶变换中出现的问题,在窗函数宽度上也存在。用正确的术语来说,这个窗函数的宽度作为窗口的支撑。如果窗口宽度很窄,那么就是一个密集支撑。在小波世界里会经常用到这个术语,后文将会看到。

        下面说明了整个过程:

        还记得傅立叶变换在时域内不存在分辨率的问题,例如我们确切的知道哪个频率分量存在。相应的在时域内也不存在时间分辨率的问题,因为我们知道每一时刻信号的确切值。相反地,傅立叶变换中的时间分辨率和时域中的频率分辨率都为0,因为没有关于它们的信息。因为在傅立叶变换中时我们用的窗口是它的核心窗—exp{jwt}函数,这个函数存在的区间为从负无穷到正无穷,所以傅立叶变换能够给出完美的频率分辨率。但是在快速傅立叶变换中,我们用的窗口长度有限,它仅仅覆盖了信号的一部分,因此导致了频率分辨率较差。我在这里说频率分辨率差,意思是我们不能确切的知道信号中哪些频率分量存在,我们只知道哪些频段的分量存在。

        傅立叶变换中用到的内核窗函数允许我们获得一个完美的频率分辨率,因为窗函数本身具有无限宽度。快速傅立叶变换用到的窗宽度长度有限,因此不能获得完美的频率分辨率。你可能会问,我们为什么不像傅立叶变换用无限长的窗口一样,而在快速傅立叶变换中却用有限长的窗口进行分析呢?那么,你浪费了所有的时间,你可能还停留在傅立叶变换那里,思路还没有到达快速傅立叶变换这里来。为使长话短说,我们面临下面这样一个困境:

        如果我们有了一个无限长的窗口,然后做傅立叶变换,会得到完美的频率分辨率,但是结果中不包含时间信息。更深一步,为了获得信号的平稳性,我们必须要有一个宽度足够短的窗函数,在这个很短的时间内,信号时平稳的。窗口越短,时间分辨率越高,信号的稳定性越高,但是频率分别率却越来越低。

        窄窗=>高时间分辨率,低频率分辨率

        宽窗=>高频率分辨率,低时间分辨率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值