2维图像转3维图像的理论概述

文章探讨了单视图深度估计的机器学习方法,利用图像内容推断深度,以及双目系统中立体匹配和深度计算的原理。还介绍了基于机器学习的半自动深度图生成算法,强调了在质量与成本之间的平衡,特别提到了对连续动作限制的问题和改进方法。
摘要由CSDN通过智能技术生成

目录

1.单视图深度估计

2.双目系统的理论分析

3. 基于机器学习的半自动深度图生成算法


        将2维图像转换为3维图像涉及从平面像素数据到具有深度信息的立体空间数据的扩展过程。这一过程通常包括几何建模、深度估计、纹理映射以及视图合成等步骤,其中涉及的数学原理涵盖线性代数、计算机图形学、图像处理等多个领域。

1.单视图深度估计

       单视图深度估计通过分析图像内容(如阴影、纹理、物体尺寸比例等)来推断深度。这是一种有挑战性的逆问题,通常需要借助机器学习模型(如卷积神经网络)进行估计。训练数据集包含成对的2D图像及其对应的深度图,模型通过学习这种对应关系来预测新图像的深度。深度估计模型的输出可以表示为:

       其中(i,j) 是图像在位置 (i, j) 的像素值,D(i,j) 是对应的深度估计值,f 是深度估计模型,θ 是模型参数。

2.双目系统的理论分析

       双目系统是计算机视觉中立体视觉技术中最简单最容易实现的一种系统,在不需要针对大型场景三维重建的视频通信特别是多视图通信中是使用最多的,相对于结构光等深度获取系统而言,其精度较低,但是使用方便,有其优势的一面。其应用还包括机器人的自主导航系统,工业自动化系统等,也是本论文采用的获取深度图像的基本系统。

      双目系统的基本物理结构框图如下所示:

图 双目系统图像深度提取

        从图中可知,双眼系统中的关键问题是左右图像中对应点的匹配问题。这里我们主要介绍双目系统。在平行双目视觉系统中,两个摄像机的配置其光学图像如图所示:

图 双目平行摄像机配置简图

       假设C1和C2摄像机的焦距相等,两个相机的内部参数和外部参数矩阵也是一样的,而且两个摄像机的光轴互相平行。X轴互相重合。由于光轴与图像平面互相垂直,故两个摄像机的图像坐标系的Y轴互相平行。因此可以将第一个摄像机沿着X轴平移一段距离后就可以与第二个摄像机完全重合。

       然后将t(x, y)划分为互补重合的小区域w,在每一个小区域中,把最大的取值点作为特征点,然后对所获得的特征点进行匹配。对作图像的每个特征点,把其在右图像中所有可能的匹配点组成一个集合。由上面的区域匹配算法,可以大概确定特征点的位置,但是可能出现的情况是在左图像中的一个点根据算法会在右图像中有两个或者多个点相似,为了更好的提高匹配的准确性,通过计算每个区域中像素平均值与该区域面积相除所得的比值办法,进一步确定相似结合,然后求两个集合中的交集,交集中的点即为匹配点。

      在双目立体视觉系统中,深度信息是分一下两步得到的。在双目立体图像间建立点点对应,主要是通过立体匹配得到的,根据对应点的视差计算出场景深度。第一部分,也就是对应点的问题,是双目立体视觉的关键;第二部分是摄像机模型问题。双目视觉系统模型中,两个摄像机的参数是一致的,光轴平行且垂直于基线,构成一共极性结构,这样的做法可以缩小对应的搜索空间,只有水平方向上的视差,简化了对应过程。第二部分,设空间一点P(X ,Y ,Z)在两个平行放置的完全相同的摄像机中像点分别是和这样在已知基线长B和焦距f的情况下,可以计算出深度信息,这是双目立体视觉的基本原理,即根据视差在插值图像上来恢复立体信息。

        通过上面的分析可知,其深度信息为:

3. 基于机器学习的半自动深度图生成算法

      人脑通过多种不同的深度线索获得对三维世界几何关系的认知。观看立体电视需要立体视频素材,利用立体摄影机和距离传感器可以捕捉这种素材,然而用这种特殊设备获取立体视频素材十分昂贵且费时。另一种方法是利用深度图像和二维到三维视频转换技术来把现有的平面视频转化为立体视频。利用现存的媒体素材比如视频、电影和剪辑等,不需要捕捉新的立体视频素材。随着计算机视觉发展,单目视频产生立体视频的技术逐渐成熟,而深度图获取是立体视频制作的重要环节。

       二维视频到三维视频的转换技术有两种:在线转换和脱机转换。在线转换的过程是全自动、实时的,它能嵌入在电视里和家中的机顶盒里,分析视频里的深度线索,然而,通过这种方式得到的立体效果不是十分理想。脱机转换是一种预处理方法,它不是实时处理,而是通过公司提供的服务完成,转换后的立体视频素材延时分发,这种方法优势在于产生的深度效果更好。

       脱机转换可以是全自动的,全手动的,或者是自动与手动相结合的半自动过程。半自动转换技术可以在质量和花费之间获取平衡。与全自动算法相比较,半自动算法允许一定量的手动参与,并且能达到更好的深度效果,同时转换的成本比全手动算法低很多。

      对于半自动深度图生成方法,由于一般视频帧率都在每秒20帧以上,如果对一段视频中每一帧都进行人机交互来得到深度图,那么工作量将异常繁重,这不仅会延长立体视频的制作周期,而且会增加制作成本。考虑到这样的情况,本章提出一种改进型的半自动深度图生成算法。

      那么对于本系统,首先需要确定两个关键帧的深度图,然后根据深度图来调整w1和w2的参数值从而获得中间各个帧的深度图。但是利用这种算法,其存在一种缺陷,就是前面两个关键帧必须是一个简单动作的过程,而不能是连续动作的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值